cryptonite/Crypto/PubKey/ECDSA.hs
2019-11-11 17:46:16 +01:00

232 lines
8.3 KiB
Haskell

-- |
-- Module : Crypto.PubKey.ECDSA
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : unknown
--
-- Elliptic Curve Digital Signature Algorithm, with the parameterized
-- curve implementations provided by module "Crypto.ECC".
--
-- Public/private key pairs can be generated using
-- 'curveGenerateKeyPair' or decoded from binary.
--
-- /WARNING:/ Only curve P-256 has constant-time implementation.
-- Signature operations with P-384 and P-521 may leak the private key.
--
-- Signature verification should be safe for all curves.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Crypto.PubKey.ECDSA
( EllipticCurveECDSA (..)
-- * Public keys
, PublicKey
, encodePublic
, decodePublic
, toPublic
-- * Private keys
, PrivateKey
, encodePrivate
, decodePrivate
-- * Signatures
, Signature(..)
, signatureFromIntegers
, signatureToIntegers
-- * Generation and verification
, signWith
, sign
, verify
) where
import Control.Monad
import Crypto.ECC
import qualified Crypto.ECC.Simple.Types as Simple
import Crypto.Error
import Crypto.Hash
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess)
import Crypto.Internal.Imports
import Crypto.Number.ModArithmetic (inverseFermat)
import Crypto.Number.Serialize
import qualified Crypto.PubKey.ECC.P256 as P256
import Crypto.Random.Types
import Data.Bits (shiftR)
import Data.Data
-- | Represent a ECDSA signature namely R and S.
data Signature curve = Signature
{ sign_r :: Scalar curve -- ^ ECDSA r
, sign_s :: Scalar curve -- ^ ECDSA s
}
deriving instance Eq (Scalar curve) => Eq (Signature curve)
deriving instance Show (Scalar curve) => Show (Signature curve)
instance NFData (Scalar curve) => NFData (Signature curve) where
rnf (Signature r s) = rnf r `seq` rnf s `seq` ()
-- | ECDSA Public Key.
type PublicKey curve = Point curve
-- | ECDSA Private Key.
type PrivateKey curve = Scalar curve
-- | Elliptic curves with ECDSA capabilities.
class EllipticCurveBasepointArith curve => EllipticCurveECDSA curve where
-- | Is a scalar in the accepted range for ECDSA
scalarIsValid :: proxy curve -> Scalar curve -> Bool
-- | Test whether the scalar is zero
scalarIsZero :: proxy curve -> Scalar curve -> Bool
scalarIsZero prx s = s == throwCryptoError (scalarFromInteger prx 0)
-- | Scalar inversion modulo the curve order
scalarInv :: proxy curve -> Scalar curve -> Maybe (Scalar curve)
-- | Return the point X coordinate as a scalar
pointX :: proxy curve -> Point curve -> Maybe (Scalar curve)
instance EllipticCurveECDSA Curve_P256R1 where
scalarIsValid _ s = not (P256.scalarIsZero s)
&& P256.scalarCmp s P256.scalarN == LT
scalarIsZero _ = P256.scalarIsZero
scalarInv _ s = let inv = P256.scalarInvSafe s
in if P256.scalarIsZero inv then Nothing else Just inv
pointX _ = P256.pointX
instance EllipticCurveECDSA Curve_P384R1 where
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p384r1)
scalarIsZero _ = ecScalarIsZero
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p384r1)
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p384r1)
instance EllipticCurveECDSA Curve_P521R1 where
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p521r1)
scalarIsZero _ = ecScalarIsZero
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p521r1)
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p521r1)
-- | Create a signature from integers (R, S).
signatureFromIntegers :: EllipticCurveECDSA curve
=> proxy curve -> (Integer, Integer) -> CryptoFailable (Signature curve)
signatureFromIntegers prx (r, s) =
liftA2 Signature (scalarFromInteger prx r) (scalarFromInteger prx s)
-- | Get integers (R, S) from a signature.
--
-- The values can then be used to encode the signature to binary with
-- ASN.1.
signatureToIntegers :: EllipticCurveECDSA curve
=> proxy curve -> Signature curve -> (Integer, Integer)
signatureToIntegers prx sig =
(scalarToInteger prx $ sign_r sig, scalarToInteger prx $ sign_s sig)
-- | Encode a public key into binary form, i.e. the uncompressed encoding
-- referenced from <https://tools.ietf.org/html/rfc5480 RFC 5480> section 2.2.
encodePublic :: (EllipticCurve curve, ByteArray bs)
=> proxy curve -> PublicKey curve -> bs
encodePublic = encodePoint
-- | Try to decode the binary form of a public key.
decodePublic :: (EllipticCurve curve, ByteArray bs)
=> proxy curve -> bs -> CryptoFailable (PublicKey curve)
decodePublic = decodePoint
-- | Encode a private key into binary form, i.e. the @privateKey@ field
-- described in <https://tools.ietf.org/html/rfc5915 RFC 5915>.
encodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
=> proxy curve -> PrivateKey curve -> bs
encodePrivate = encodeScalar
-- | Try to decode the binary form of a private key.
decodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
=> proxy curve -> bs -> CryptoFailable (PrivateKey curve)
decodePrivate = decodeScalar
-- | Create a public key from a private key.
toPublic :: EllipticCurveECDSA curve
=> proxy curve -> PrivateKey curve -> PublicKey curve
toPublic = pointBaseSmul
-- | Sign message using the private key and an explicit k scalar.
signWith :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> Scalar curve -> PrivateKey curve -> hash -> msg -> Maybe (Signature curve)
signWith prx k d hashAlg msg = do
let z = tHash prx hashAlg msg
point = pointBaseSmul prx k
r <- pointX prx point
kInv <- scalarInv prx k
let s = scalarMul prx kInv (scalarAdd prx z (scalarMul prx r d))
when (scalarIsZero prx r || scalarIsZero prx s) Nothing
return $ Signature r s
-- | Sign a message using hash and private key.
sign :: (EllipticCurveECDSA curve, MonadRandom m, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> PrivateKey curve -> hash -> msg -> m (Signature curve)
sign prx pk hashAlg msg = do
k <- curveGenerateScalar prx
case signWith prx k pk hashAlg msg of
Nothing -> sign prx pk hashAlg msg
Just sig -> return sig
-- | Verify a signature using hash and public key.
verify :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> hash -> PublicKey curve -> Signature curve -> msg -> Bool
verify prx hashAlg q (Signature r s) msg
| not (scalarIsValid prx r) = False
| not (scalarIsValid prx s) = False
| otherwise = maybe False (r ==) $ do
w <- scalarInv prx s
let z = tHash prx hashAlg msg
u1 = scalarMul prx z w
u2 = scalarMul prx r w
x = pointsSmulVarTime prx u1 u2 q
pointX prx x
-- Note: precondition q /= PointO is not tested because we assume
-- point decoding never decodes point at infinity.
-- | Truncate and hash.
tHash :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> hash -> msg -> Scalar curve
tHash prx hashAlg m =
throwCryptoError $ scalarFromInteger prx (if d > 0 then shiftR e d else e)
where e = os2ip $ hashWith hashAlg m
d = hashDigestSize hashAlg * 8 - curveOrderBits prx
ecScalarIsValid :: Simple.Curve c => proxy c -> Simple.Scalar c -> Bool
ecScalarIsValid prx (Simple.Scalar s) = s > 0 && s < n
where n = Simple.curveEccN $ Simple.curveParameters prx
ecScalarIsZero :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Bool
ecScalarIsZero (Simple.Scalar a) = a == 0
ecScalarInv :: Simple.Curve c
=> proxy c -> Simple.Scalar c -> Maybe (Simple.Scalar c)
ecScalarInv prx (Simple.Scalar s)
| i == 0 = Nothing
| otherwise = Just $ Simple.Scalar i
where n = Simple.curveEccN $ Simple.curveParameters prx
i = inverseFermat s n
ecPointX :: Simple.Curve c
=> proxy c -> Simple.Point c -> Maybe (Simple.Scalar c)
ecPointX _ Simple.PointO = Nothing
ecPointX prx (Simple.Point x _) = Just (Simple.Scalar $ x `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters prx