Compare commits

..

No commits in common. "uni2work" and "haskell-ci" have entirely different histories.

219 changed files with 2409 additions and 9601 deletions

View File

@ -1,29 +0,0 @@
# ~*~ auto-generated by haskell-ci with config : 4fdddfa41dd039e198b8d125a70471f7dd140fa01001d99126af56fb31429ece ~*~
version: "{build}"
clone_folder: C:\project
build: off
cache:
- "C:\\SR -> .appveyor.yml"
environment:
global:
STACK_ROOT: "C:\\SR"
matrix:
- { BUILD: "ghc-8.6", STACKCMD: "stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps", STACKCFG: "{ resolver: lts-14.27, packages: [ '.' ], extra-deps: [], flags: {} }", STACKURL: "https://www.stackage.org/stack/windows-x86_64" }
- { BUILD: "ghc-8.8", STACKCMD: "stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps", STACKCFG: "{ resolver: lts-15.1, packages: [ '.' ], extra-deps: [], flags: {} }", STACKURL: "https://www.stackage.org/stack/windows-x86_64" }
matrix:
fast_finish: true
install:
- set PATH=C:\Program Files\Git\mingw64\bin;%PATH%
- curl -ostack.zip -L %STACKURL%
- 7z x stack.zip stack.exe
- refreshenv
test_script:
- echo %STACKCFG% > stack.yaml
- stack setup > nul
- echo "" | %STACKCMD%

1
.envrc
View File

@ -1 +0,0 @@
use flake

1
.gitignore vendored
View File

@ -12,4 +12,3 @@ benchs/Hash
*.sublime-workspace
.cabal-sandbox/
cabal.sandbox.config
stack.yaml.lock

View File

@ -1,21 +1,22 @@
# compiler supported and their equivalent LTS
compiler: ghc-7.8 lts-2.22
compiler: ghc-7.10 lts-6.35
compiler: ghc-8.0 lts-9.21
compiler: ghc-8.2 lts-11.22
compiler: ghc-8.4 lts-12.26
compiler: ghc-8.6 lts-14.27
compiler: ghc-8.8 lts-15.1
compiler: ghc-8.2 lts-10.4
compiler: ghc-8.4 ghc-8.4-alpha2
# options
# option: alias x=y z=v
option: testdeps extradep=QuickCheck-2.11.3 extradep=ansi-terminal-0.8.0.1 extradep=async-2.1.1.1 extradep=call-stack-0.1.0 extradep=clock-0.7.2 extradep=optparse-applicative-0.14.0.0 extradep=random-1.1 extradep=tagged-0.8.5 extradep=unbounded-delays-0.1.1.0 extradep=tasty-1.0.0.1 extradep=tasty-hunit-0.10.0.1 extradep=tasty-kat-0.0.3 extradep=tasty-quickcheck-0.9.2 extradep=ansi-wl-pprint-0.6.8.2 extradep=colour-2.3.4 extradep=tf-random-0.5 extradep=transformers-compat-0.5.1.4 extradep=primitive-0.6.3.0 allow-newer
option: gaugedeps extradep=gauge-0.2.1
option: basementmin extradep=basement-0.0.8 extradep=memory-0.14.18
# builds
build: ghc-8.0 basementmin gaugedeps
build: ghc-8.2 basementmin
build: ghc-8.4
build: ghc-8.6 os=linux,osx,windows
build: ghc-8.8 os=linux,windows
# builds
build: ghc-7.8 nohaddock extradep=basement-0.0.6 extradep=foundation-0.0.19 extradep=memory-0.14.14 gaugedeps
build: ghc-8.2 gaugedeps
build: ghc-7.10 extradep=basement-0.0.6 extradep=foundation-0.0.19 extradep=memory-0.14.14 gaugedeps
build: ghc-8.0 gaugedeps
build: ghc-8.0 os=osx gaugedeps
build: ghc-8.4 extradep=basement-0.0.6 extradep=memory-0.14.14 extradep=foundation-0.0.19 testdeps gaugedeps extradep=vector-0.12.0.1
# packages
package: '.'

View File

@ -1,3 +0,0 @@
- arguments: [ --cpp-define=ARCH_X86_64
]
- ignore: { name: Use camelCase }

View File

@ -1,4 +1,7 @@
# ~*~ auto-generated by haskell-ci with config : 4fdddfa41dd039e198b8d125a70471f7dd140fa01001d99126af56fb31429ece ~*~
# ~*~ auto-generated by haskell-ci with config : 808ff5e84bd5804eaf848c1b7027d5fc386efd9edcf8d234090190900b1293df ~*~
# Use new container infrastructure to enable caching
sudo: false
# Caching so the next build will be fast too.
cache:
@ -7,32 +10,29 @@ cache:
- $HOME/.stack
- $HOME/.local
language: generic
os: linux
jobs:
matrix:
include:
- { env: BUILD=stack RESOLVER=ghc-8.0, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.2, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.4, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.6, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.6, addons: { apt: { packages: [ libgmp-dev ] } }, os: osx }
- { env: BUILD=stack RESOLVER=ghc-8.8, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=hlint }
- { env: BUILD=weeder, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-7.8, compiler: ghc-7.8, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.2, compiler: ghc-8.2, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-7.10, compiler: ghc-7.10, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.0, compiler: ghc-8.0, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=stack RESOLVER=ghc-8.0, compiler: ghc-8.0, language: generic, addons: { apt: { packages: [ libgmp-dev ] } }, os: osx }
- { env: BUILD=stack RESOLVER=ghc-8.4, compiler: ghc-8.4, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=hlint, compiler: hlint, language: generic }
- { env: BUILD=weeder, compiler: weeder, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
allow_failures:
- { env: BUILD=hlint }
- { env: BUILD=weeder, addons: { apt: { packages: [ libgmp-dev ] } } }
- { env: BUILD=hlint, compiler: hlint, language: generic }
- { env: BUILD=weeder, compiler: weeder, language: generic, addons: { apt: { packages: [ libgmp-dev ] } } }
install:
- export PATH=$HOME/.local/bin:$HOME/.cabal/bin:$PATH
- export PATH=$HOME/.local/bin::$HOME/.cabal/bin:$PATH
- mkdir -p ~/.local/bin
- |
case "$BUILD" in
stack|weeder)
if [ `uname` = "Darwin" ]
then
travis_retry curl -L https://www.stackage.org/stack/osx-x86_64 | tar xz --strip-components=1 --include '*/stack' -C ~/.local/bin
travis_retry curl --insecure -L https://www.stackage.org/stack/osx-x86_64 | tar xz --strip-components=1 --include '*/stack' -C ~/.local/bin
else
travis_retry curl -L https://www.stackage.org/stack/linux-x86_64 | tar xz --wildcards --strip-components=1 -C ~/.local/bin '*/stack'
fi
@ -49,33 +49,39 @@ script:
stack)
# create the build stack.yaml
case "$RESOLVER" in
ghc-8.0)
echo "{ resolver: lts-9.21, packages: [ '.' ], extra-deps: [ basement-0.0.8, memory-0.14.18, gauge-0.2.1 ], flags: {} }" > stack.yaml
stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps
ghc-7.8)
echo "{ resolver: lts-2.22, packages: [ '.' ], extra-deps: [ basement-0.0.6, foundation-0.0.19, memory-0.14.14, gauge-0.2.1 ], flags: {} }" > stack.yaml
export HADDOCK_OPTs="--no-haddock"
;;
ghc-8.2)
echo "{ resolver: lts-11.22, packages: [ '.' ], extra-deps: [ basement-0.0.8, memory-0.14.18 ], flags: {} }" > stack.yaml
stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps
echo "{ resolver: lts-10.4, packages: [ '.' ], extra-deps: [ gauge-0.2.1 ], flags: {} }" > stack.yaml
export HADDOCK_OPTs="--haddock --no-haddock-deps"
;;
ghc-7.10)
echo "{ resolver: lts-6.35, packages: [ '.' ], extra-deps: [ basement-0.0.6, foundation-0.0.19, memory-0.14.14, gauge-0.2.1 ], flags: {} }" > stack.yaml
export HADDOCK_OPTs="--haddock --no-haddock-deps"
;;
ghc-8.0)
echo "{ resolver: lts-9.21, packages: [ '.' ], extra-deps: [ gauge-0.2.1 ], flags: {} }" > stack.yaml
export HADDOCK_OPTs="--haddock --no-haddock-deps"
;;
ghc-8.0)
echo "{ resolver: lts-9.21, packages: [ '.' ], extra-deps: [ gauge-0.2.1 ], flags: {} }" > stack.yaml
export HADDOCK_OPTs="--haddock --no-haddock-deps"
;;
ghc-8.4)
echo "{ resolver: lts-12.26, packages: [ '.' ], extra-deps: [], flags: {} }" > stack.yaml
stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps
;;
ghc-8.6)
echo "{ resolver: lts-14.27, packages: [ '.' ], extra-deps: [], flags: {} }" > stack.yaml
stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps
;;
ghc-8.8)
echo "{ resolver: lts-15.1, packages: [ '.' ], extra-deps: [], flags: {} }" > stack.yaml
stack --no-terminal build --install-ghc --coverage --test --bench --no-run-benchmarks --haddock --no-haddock-deps
echo "{ setup-info: { ghc: { \"linux32-nopie\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-i386-deb8-linux.tar.xz\", sha256: \"be1a3b5de9f671199533d22f2810d9b62c6392b32b39833cd384a094566703c6\" } }, \"windows32\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-i386-unknown-mingw32.tar.xz\", sha256: \"3f4b9291ad35d89ca7b3561312a4329545aedceb5c4c8c5c4cf01550037376a1\" } }, \"linux64\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-deb8-linux.tar.xz\", sha256: \"55b54bce14661c19288c3413b8fab95d2b7fae407986323c7f0b6a732bec6a38\" } }, \"linux64-tinfo\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-deb8-linux.tar.xz\", sha256: \"55b54bce14661c19288c3413b8fab95d2b7fae407986323c7f0b6a732bec6a38\" } }, \"linux64-tinfo6\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-fedora27-linux.tar.xz\", sha256: \"47c7e4350c9560f984bde75b243aa10c91e37494152d87d20f84fcee857338ef\" } }, \"linux64-tinfo-nopie\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-fedora27-linux.tar.xz\", sha256: \"47c7e4350c9560f984bde75b243aa10c91e37494152d87d20f84fcee857338ef\" } }, \"linux64-nopie\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-deb8-linux.tar.xz\", sha256: \"55b54bce14661c19288c3413b8fab95d2b7fae407986323c7f0b6a732bec6a38\" } }, \"windows64\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-unknown-mingw32.tar.xz\", sha256: \"93dd7f80e3c645b79a91f3023046144ec88927961a3443019034e2893de43752\" } }, \"macosx\": { \"8.4.0.20180118\": { url: \"https://downloads.haskell.org/~ghc/8.4.1-alpha2/ghc-8.4.0.20180118-x86_64-apple-darwin.tar.xz\", sha256: \"b3119b255ab3d1a09fcf9919bddbbe2cd77f9175de14e4b23f20b40abe5edea1\" } } } }, resolver: ghc-8.4.0.20180118, compiler: ghc-8.4.0.20180118, compiler-check: match-exact, packages: [ '.' ], extra-deps: [ basement-0.0.6, memory-0.14.14, foundation-0.0.19, vector-0.12.0.1, QuickCheck-2.11.3, ansi-terminal-0.8.0.1, async-2.1.1.1, call-stack-0.1.0, clock-0.7.2, optparse-applicative-0.14.0.0, random-1.1, tagged-0.8.5, unbounded-delays-0.1.1.0, tasty-1.0.0.1, tasty-hunit-0.10.0.1, tasty-kat-0.0.3, tasty-quickcheck-0.9.2, ansi-wl-pprint-0.6.8.2, colour-2.3.4, tf-random-0.5, transformers-compat-0.5.1.4, primitive-0.6.3.0, gauge-0.2.1 ], flags: {}, allow-newer: true }" > stack.yaml
export HADDOCK_OPTs="--haddock --no-haddock-deps"
;;
esac
# build & run test
stack --no-terminal test --install-ghc --coverage --bench --no-run-benchmarks ${HADDOCK_OPTS}
;;
hlint)
curl -sL https://raw.github.com/ndmitchell/hlint/master/misc/travis.sh | sh -s . --cpp-define=__GLASGOW_HASKELL__=800 --cpp-define=x86_64_HOST_ARCH=1 --cpp-define=mingw32_HOST_OS=1
;;
weeder)
stack --no-terminal build --install-ghc --ghc-options="-ddump-to-file -ddump-hi" --test --no-run-tests --bench --no-run-benchmarks
stack --no-terminal build --install-ghc
curl -sL https://raw.github.com/ndmitchell/weeder/master/misc/travis.sh | sh -s .
;;
esac

View File

@ -1,67 +1,3 @@
## 0.30
* Fix some C symbol blake2b prefix to be cryptonite_ prefix (fix mixing with other C library)
* add hmac-lazy
* Fix compilation with GHC 9.2
* Drop support for GHC8.0, GHC8.2, GHC8.4, GHC8.6
## 0.29
* advance compilation with gmp breakage due to change upstream
* Add native EdDSA support
## 0.28
* Add hash constant time capability
* Prevent possible overflow during hashing by hashing in 4GB chunks
## 0.27
* Optimise AES GCM and CCM
* Optimise P256R1 implementation
* Various AES-NI building improvements
* Add better ECDSA support
* Add XSalsa derive
* Implement square roots for ECC binary curve
* Various tests and benchmarks
## 0.26
* Add Rabin cryptosystem (and variants)
* Add bcrypt_pbkdf key derivation function
* Optimize Blowfish implementation
* Add KMAC (Keccak Message Authentication Code)
* Add ECDSA sign/verify digest APIs
* Hash algorithms with runtime output length
* Update blake2 to latest upstream version
* RSA-PSS with arbitrary key size
* SHAKE with output length not divisible by 8
* Add Read and Data instances for Digest type
* Improve P256 scalar primitives
* Fix hash truncation bug in DSA
* Fix cost parsing for bcrypt
* Fix ECC failures on arm64
* Correction to PKCS#1 v1.5 padding
* Use powModSecInteger when available
* Drop GHC 7.8 and GHC 7.10 support, refer to pkg-guidelines
* Optimise GCM mode
* Add little endian serialization of integer
## 0.25
* Improve digest binary conversion efficiency
* AES CCM support
* Add MonadFailure instance for CryptoFailable
* Various misc improvements on documentation
* Edwards25519 lowlevel arithmetic support
* P256 add point negation
* Improvement in ECC (benchmark, better normalization)
* Blake2 improvements to context size
* Use gauge instead of criterion
* Use haskell-ci for CI scripts
* Improve Digest memory representation to be 2 less Ints and one less boxing
moving from `UArray` to `Block`
## 0.24
* Ed25519: generateSecret & Documentation updates

View File

@ -19,6 +19,8 @@ import Crypto.Cipher.Types.Block
import Crypto.Cipher.AES.Primitive
import Crypto.Internal.Imports
import Data.ByteArray as BA
-- | AES with 128 bit key
newtype AES128 = AES128 AES
deriving (NFData)
@ -57,7 +59,6 @@ instance BlockCipher CSTR where \
; ctrCombine (CSTR aes) (IV iv) = encryptCTR aes (IV iv) \
; aeadInit AEAD_GCM (CSTR aes) iv = CryptoPassed $ AEAD (gcmMode aes) (gcmInit aes iv) \
; aeadInit AEAD_OCB (CSTR aes) iv = CryptoPassed $ AEAD (ocbMode aes) (ocbInit aes iv) \
; aeadInit (AEAD_CCM n m l) (CSTR aes) iv = AEAD (ccmMode aes) <$> ccmInit aes iv n m l \
; aeadInit _ _ _ = CryptoFailed CryptoError_AEADModeNotSupported \
}; \
instance BlockCipher128 CSTR where \

View File

@ -37,9 +37,6 @@ module Crypto.Cipher.AES.Primitive
, decryptCTR
, decryptXTS
-- * CTR with 32-bit wrapping
, combineC32
-- * Incremental GCM
, gcmMode
, gcmInit
@ -47,10 +44,6 @@ module Crypto.Cipher.AES.Primitive
-- * Incremental OCB
, ocbMode
, ocbInit
-- * CCM
, ccmMode
, ccmInit
) where
import Data.Word
@ -80,7 +73,6 @@ instance BlockCipher AES where
ctrCombine = encryptCTR
aeadInit AEAD_GCM aes iv = CryptoPassed $ AEAD (gcmMode aes) (gcmInit aes iv)
aeadInit AEAD_OCB aes iv = CryptoPassed $ AEAD (ocbMode aes) (ocbInit aes iv)
aeadInit (AEAD_CCM n m l) aes iv = AEAD (ccmMode aes) <$> ccmInit aes iv n m l
aeadInit _ _ _ = CryptoFailed CryptoError_AEADModeNotSupported
instance BlockCipher128 AES where
xtsEncrypt = encryptXTS
@ -104,15 +96,6 @@ ocbMode aes = AEADModeImpl
, aeadImplFinalize = ocbFinish aes
}
-- | Create an AES AEAD implementation for CCM
ccmMode :: AES -> AEADModeImpl AESCCM
ccmMode aes = AEADModeImpl
{ aeadImplAppendHeader = ccmAppendAAD aes
, aeadImplEncrypt = ccmEncrypt aes
, aeadImplDecrypt = ccmDecrypt aes
, aeadImplFinalize = ccmFinish aes
}
-- | AES Context (pre-processed key)
newtype AES = AES ScrubbedBytes
@ -126,19 +109,12 @@ newtype AESGCM = AESGCM ScrubbedBytes
newtype AESOCB = AESOCB ScrubbedBytes
deriving (NFData)
-- | AESCCM State
newtype AESCCM = AESCCM ScrubbedBytes
deriving (NFData)
sizeGCM :: Int
sizeGCM = 320
sizeGCM = 80
sizeOCB :: Int
sizeOCB = 160
sizeCCM :: Int
sizeCCM = 80
keyToPtr :: AES -> (Ptr AES -> IO a) -> IO a
keyToPtr (AES b) f = withByteArray b (f . castPtr)
@ -176,13 +152,6 @@ withOCBKeyAndCopySt aes (AESOCB gcmSt) f =
a <- withByteArray newSt $ \gcmStPtr -> f (castPtr gcmStPtr) aesPtr
return (a, AESOCB newSt)
withCCMKeyAndCopySt :: AES -> AESCCM -> (Ptr AESCCM -> Ptr AES -> IO a) -> IO (a, AESCCM)
withCCMKeyAndCopySt aes (AESCCM ccmSt) f =
keyToPtr aes $ \aesPtr -> do
newSt <- B.copy ccmSt (\_ -> return ())
a <- withByteArray newSt $ \ccmStPtr -> f (castPtr ccmStPtr) aesPtr
return (a, AESCCM newSt)
-- | Initialize a new context with a key
--
-- Key needs to be of length 16, 24 or 32 bytes. Any other values will return failure
@ -320,21 +289,6 @@ decryptXTS :: ByteArray ba
-> ba -- ^ output decrypted
decryptXTS = doXTS c_aes_decrypt_xts
-- | encrypt/decrypt using Counter mode (32-bit wrapping used in AES-GCM-SIV)
{-# NOINLINE combineC32 #-}
combineC32 :: ByteArray ba
=> AES -- ^ AES Context
-> IV AES -- ^ initial vector of AES block size (usually representing a 128 bit integer)
-> ba -- ^ plaintext input
-> ba -- ^ ciphertext output
combineC32 ctx iv input
| len <= 0 = B.empty
| B.length iv /= 16 = error $ "AES error: IV length must be block size (16). Its length is: " ++ show (B.length iv)
| otherwise = B.allocAndFreeze len doEncrypt
where doEncrypt o = withKeyAndIV ctx iv $ \k v -> withByteArray input $ \i ->
c_aes_encrypt_c32 (castPtr o) k v i (fromIntegral len)
len = B.length input
{-# INLINE doECB #-}
doECB :: ByteArray ba
=> (Ptr b -> Ptr AES -> CString -> CUInt -> IO ())
@ -493,78 +447,6 @@ ocbFinish ctx ocb taglen = AuthTag $ B.take taglen computeTag
where computeTag = B.allocAndFreeze 16 $ \t ->
withOCBKeyAndCopySt ctx ocb (c_aes_ocb_finish (castPtr t)) >> return ()
ccmGetM :: CCM_M -> Int
ccmGetL :: CCM_L -> Int
ccmGetM m = case m of
CCM_M4 -> 4
CCM_M6 -> 6
CCM_M8 -> 8
CCM_M10 -> 10
CCM_M12 -> 12
CCM_M14 -> 14
CCM_M16 -> 16
ccmGetL l = case l of
CCM_L2 -> 2
CCM_L3 -> 3
CCM_L4 -> 4
-- | initialize a ccm context
{-# NOINLINE ccmInit #-}
ccmInit :: ByteArrayAccess iv => AES -> iv -> Int -> CCM_M -> CCM_L -> CryptoFailable AESCCM
ccmInit ctx iv n m l
| 15 - li /= B.length iv = CryptoFailed CryptoError_IvSizeInvalid
| otherwise = unsafeDoIO $ do
sm <- B.alloc sizeCCM $ \ccmStPtr ->
withKeyAndIV ctx iv $ \k v ->
c_aes_ccm_init (castPtr ccmStPtr) k v (fromIntegral $ B.length iv) (fromIntegral n) (fromIntegral mi) (fromIntegral li)
return $ CryptoPassed (AESCCM sm)
where
mi = ccmGetM m
li = ccmGetL l
-- | append data which is only going to be authenticated to the CCM context.
--
-- needs to happen after initialization and before appending encryption/decryption data.
{-# NOINLINE ccmAppendAAD #-}
ccmAppendAAD :: ByteArrayAccess aad => AES -> AESCCM -> aad -> AESCCM
ccmAppendAAD ctx ccm input = unsafeDoIO $ snd <$> withCCMKeyAndCopySt ctx ccm doAppend
where doAppend ccmStPtr aesPtr =
withByteArray input $ \i -> c_aes_ccm_aad ccmStPtr aesPtr i (fromIntegral $ B.length input)
-- | append data to encrypt and append to the CCM context
--
-- the bytearray needs to be a multiple of AES block size, unless it's the last call to this function.
-- needs to happen after AAD appending, or after initialization if no AAD data.
{-# NOINLINE ccmEncrypt #-}
ccmEncrypt :: ByteArray ba => AES -> AESCCM -> ba -> (ba, AESCCM)
ccmEncrypt ctx ccm input = unsafeDoIO $ withCCMKeyAndCopySt ctx ccm cbcmacAndIv
where len = B.length input
cbcmacAndIv ccmStPtr aesPtr =
B.alloc len $ \o ->
withByteArray input $ \i ->
c_aes_ccm_encrypt (castPtr o) ccmStPtr aesPtr i (fromIntegral len)
-- | append data to decrypt and append to the CCM context
--
-- the bytearray needs to be a multiple of AES block size, unless it's the last call to this function.
-- needs to happen after AAD appending, or after initialization if no AAD data.
{-# NOINLINE ccmDecrypt #-}
ccmDecrypt :: ByteArray ba => AES -> AESCCM -> ba -> (ba, AESCCM)
ccmDecrypt ctx ccm input = unsafeDoIO $ withCCMKeyAndCopySt ctx ccm cbcmacAndIv
where len = B.length input
cbcmacAndIv ccmStPtr aesPtr =
B.alloc len $ \o ->
withByteArray input $ \i ->
c_aes_ccm_decrypt (castPtr o) ccmStPtr aesPtr i (fromIntegral len)
-- | Generate the Tag from CCM context
{-# NOINLINE ccmFinish #-}
ccmFinish :: AES -> AESCCM -> Int -> AuthTag
ccmFinish ctx ccm taglen = AuthTag $ B.take taglen computeTag
where computeTag = B.allocAndFreeze 16 $ \t ->
withCCMKeyAndCopySt ctx ccm (c_aes_ccm_finish (castPtr t)) >> return ()
------------------------------------------------------------------------
foreign import ccall "cryptonite_aes.h cryptonite_aes_initkey"
c_aes_init :: Ptr AES -> CString -> CUInt -> IO ()
@ -596,9 +478,6 @@ foreign import ccall unsafe "cryptonite_aes.h cryptonite_aes_gen_ctr_cont"
foreign import ccall "cryptonite_aes.h cryptonite_aes_encrypt_ctr"
c_aes_encrypt_ctr :: CString -> Ptr AES -> Ptr Word8 -> CString -> CUInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_encrypt_c32"
c_aes_encrypt_c32 :: CString -> Ptr AES -> Ptr Word8 -> CString -> CUInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_gcm_init"
c_aes_gcm_init :: Ptr AESGCM -> Ptr AES -> Ptr Word8 -> CUInt -> IO ()
@ -629,17 +508,3 @@ foreign import ccall "cryptonite_aes.h cryptonite_aes_ocb_decrypt"
foreign import ccall "cryptonite_aes.h cryptonite_aes_ocb_finish"
c_aes_ocb_finish :: CString -> Ptr AESOCB -> Ptr AES -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_ccm_init"
c_aes_ccm_init :: Ptr AESCCM -> Ptr AES -> Ptr Word8 -> CUInt -> CUInt -> CInt -> CInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_ccm_aad"
c_aes_ccm_aad :: Ptr AESCCM -> Ptr AES -> CString -> CUInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_ccm_encrypt"
c_aes_ccm_encrypt :: CString -> Ptr AESCCM -> Ptr AES -> CString -> CUInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_ccm_decrypt"
c_aes_ccm_decrypt :: CString -> Ptr AESCCM -> Ptr AES -> CString -> CUInt -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_ccm_finish"
c_aes_ccm_finish :: CString -> Ptr AESCCM -> Ptr AES -> IO ()

View File

@ -1,193 +0,0 @@
-- |
-- Module : Crypto.Cipher.AESGCMSIV
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- Implementation of AES-GCM-SIV, an AEAD scheme with nonce misuse resistance
-- defined in <https://tools.ietf.org/html/rfc8452 RFC 8452>.
--
-- To achieve the nonce misuse-resistance property, encryption requires two
-- passes on the plaintext, hence no streaming API is provided. This AEAD
-- operates on complete inputs held in memory. For simplicity, the
-- implementation of decryption uses a similar pattern, with performance
-- penalty compared to an implementation which is able to merge both passes.
--
-- The specification allows inputs up to 2^36 bytes but this implementation
-- requires AAD and plaintext/ciphertext to be both smaller than 2^32 bytes.
{-# LANGUAGE ForeignFunctionInterface #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Crypto.Cipher.AESGCMSIV
( Nonce
, nonce
, generateNonce
, encrypt
, decrypt
) where
import Data.Bits
import Data.Word
import Foreign.C.Types
import Foreign.C.String
import Foreign.Ptr (Ptr, plusPtr)
import Foreign.Storable (peekElemOff, poke, pokeElemOff)
import Data.ByteArray
import qualified Data.ByteArray as B
import Data.Memory.Endian (toLE)
import Data.Memory.PtrMethods (memXor)
import Crypto.Cipher.AES.Primitive
import Crypto.Cipher.Types
import Crypto.Error
import Crypto.Internal.Compat (unsafeDoIO)
import Crypto.Random
-- 12-byte nonces
-- | Nonce value for AES-GCM-SIV, always 12 bytes.
newtype Nonce = Nonce Bytes deriving (Show, Eq, ByteArrayAccess)
-- | Nonce smart constructor. Accepts only 12-byte inputs.
nonce :: ByteArrayAccess iv => iv -> CryptoFailable Nonce
nonce iv
| B.length iv == 12 = CryptoPassed (Nonce $ B.convert iv)
| otherwise = CryptoFailed CryptoError_IvSizeInvalid
-- | Generate a random nonce for use with AES-GCM-SIV.
generateNonce :: MonadRandom m => m Nonce
generateNonce = Nonce <$> getRandomBytes 12
-- POLYVAL (mutable context)
newtype Polyval = Polyval Bytes
polyvalInit :: ScrubbedBytes -> IO Polyval
polyvalInit h = Polyval <$> doInit
where doInit = B.alloc 272 $ \pctx -> B.withByteArray h $ \ph ->
c_aes_polyval_init pctx ph
polyvalUpdate :: ByteArrayAccess ba => Polyval -> ba -> IO ()
polyvalUpdate (Polyval ctx) bs = B.withByteArray ctx $ \pctx ->
B.withByteArray bs $ \pbs -> c_aes_polyval_update pctx pbs sz
where sz = fromIntegral (B.length bs)
polyvalFinalize :: Polyval -> IO ScrubbedBytes
polyvalFinalize (Polyval ctx) = B.alloc 16 $ \dst ->
B.withByteArray ctx $ \pctx -> c_aes_polyval_finalize pctx dst
foreign import ccall unsafe "cryptonite_aes.h cryptonite_aes_polyval_init"
c_aes_polyval_init :: Ptr Polyval -> CString -> IO ()
foreign import ccall "cryptonite_aes.h cryptonite_aes_polyval_update"
c_aes_polyval_update :: Ptr Polyval -> CString -> CUInt -> IO ()
foreign import ccall unsafe "cryptonite_aes.h cryptonite_aes_polyval_finalize"
c_aes_polyval_finalize :: Ptr Polyval -> CString -> IO ()
-- Key Generation
le32iv :: Word32 -> Nonce -> Bytes
le32iv n (Nonce iv) = B.allocAndFreeze 16 $ \ptr -> do
poke ptr (toLE n)
copyByteArrayToPtr iv (ptr `plusPtr` 4)
deriveKeys :: BlockCipher128 aes => aes -> Nonce -> (ScrubbedBytes, AES)
deriveKeys aes iv =
case cipherKeySize aes of
KeySizeFixed sz | sz `mod` 8 == 0 ->
let mak = buildKey [0 .. 1]
key = buildKey [2 .. fromIntegral (sz `div` 8) + 1]
mek = throwCryptoError (cipherInit key)
in (mak, mek)
_ -> error "AESGCMSIV: invalid cipher"
where
idx n = ecbEncrypt aes (le32iv n iv) `takeView` 8
buildKey = B.concat . map idx
-- Encryption and decryption
lengthInvalid :: ByteArrayAccess ba => ba -> Bool
lengthInvalid bs
| finiteBitSize len > 32 = len >= 1 `unsafeShiftL` 32
| otherwise = False
where len = B.length bs
-- | AEAD encryption with the specified key and nonce. The key must be given
-- as an initialized 'Crypto.Cipher.AES.AES128' or 'Crypto.Cipher.AES.AES256'
-- cipher.
--
-- Lengths of additional data and plaintext must be less than 2^32 bytes,
-- otherwise an exception is thrown.
encrypt :: (BlockCipher128 aes, ByteArrayAccess aad, ByteArray ba)
=> aes -> Nonce -> aad -> ba -> (AuthTag, ba)
encrypt aes iv aad plaintext
| lengthInvalid aad = error "AESGCMSIV: aad is too large"
| lengthInvalid plaintext = error "AESGCMSIV: plaintext is too large"
| otherwise = (AuthTag tag, ciphertext)
where
(mak, mek) = deriveKeys aes iv
ss = getSs mak aad plaintext
tag = buildTag mek ss iv
ciphertext = combineC32 mek (transformTag tag) plaintext
-- | AEAD decryption with the specified key and nonce. The key must be given
-- as an initialized 'Crypto.Cipher.AES.AES128' or 'Crypto.Cipher.AES.AES256'
-- cipher.
--
-- Lengths of additional data and ciphertext must be less than 2^32 bytes,
-- otherwise an exception is thrown.
decrypt :: (BlockCipher128 aes, ByteArrayAccess aad, ByteArray ba)
=> aes -> Nonce -> aad -> ba -> AuthTag -> Maybe ba
decrypt aes iv aad ciphertext (AuthTag tag)
| lengthInvalid aad = error "AESGCMSIV: aad is too large"
| lengthInvalid ciphertext = error "AESGCMSIV: ciphertext is too large"
| tag `constEq` buildTag mek ss iv = Just plaintext
| otherwise = Nothing
where
(mak, mek) = deriveKeys aes iv
ss = getSs mak aad plaintext
plaintext = combineC32 mek (transformTag tag) ciphertext
-- Calculate S_s = POLYVAL(mak, X_1, X_2, ...).
getSs :: (ByteArrayAccess aad, ByteArrayAccess ba)
=> ScrubbedBytes -> aad -> ba -> ScrubbedBytes
getSs mak aad plaintext = unsafeDoIO $ do
ctx <- polyvalInit mak
polyvalUpdate ctx aad
polyvalUpdate ctx plaintext
polyvalUpdate ctx (lb :: Bytes) -- the "length block"
polyvalFinalize ctx
where
lb = B.allocAndFreeze 16 $ \ptr -> do
pokeElemOff ptr 0 (toLE64 $ B.length aad)
pokeElemOff ptr 1 (toLE64 $ B.length plaintext)
toLE64 x = toLE (fromIntegral x * 8 :: Word64)
-- XOR the first 12 bytes of S_s with the nonce and clear the most significant
-- bit of the last byte.
tagInput :: ScrubbedBytes -> Nonce -> Bytes
tagInput ss (Nonce iv) =
B.copyAndFreeze ss $ \ptr ->
B.withByteArray iv $ \ivPtr -> do
memXor ptr ptr ivPtr 12
b <- peekElemOff ptr 15
pokeElemOff ptr 15 (b .&. (0x7f :: Word8))
-- Encrypt the result with AES using the message-encryption key to produce the
-- tag.
buildTag :: BlockCipher128 aes => aes -> ScrubbedBytes -> Nonce -> Bytes
buildTag mek ss iv = ecbEncrypt mek (tagInput ss iv)
-- The initial counter block is the tag with the most significant bit of the
-- last byte set to one.
transformTag :: Bytes -> IV AES
transformTag tag = toIV $ B.copyAndFreeze tag $ \ptr ->
peekElemOff ptr 15 >>= pokeElemOff ptr 15 . (.|. (0x80 :: Word8))
where toIV bs = let Just iv = makeIV (bs :: Bytes) in iv

View File

@ -5,33 +5,15 @@
-- Portability : Good
{-# LANGUAGE MagicHash #-}
module Crypto.Cipher.Blowfish.Box
( KeySchedule(..)
, createKeySchedule
, copyKeySchedule
( createKeySchedule
) where
import Crypto.Internal.WordArray (MutableArray32,
mutableArray32FromAddrBE,
mutableArrayRead32,
mutableArrayWrite32)
newtype KeySchedule = KeySchedule MutableArray32
-- | Copy the state of one key schedule into the other.
-- The first parameter is the destination and the second the source.
copyKeySchedule :: KeySchedule -> KeySchedule -> IO ()
copyKeySchedule (KeySchedule dst) (KeySchedule src) = loop 0
where
loop 1042 = return ()
loop i = do
w32 <-mutableArrayRead32 src i
mutableArrayWrite32 dst i w32
loop (i + 1)
import Crypto.Internal.WordArray (mutableArray32FromAddrBE, MutableArray32)
-- | Create a key schedule mutable array of the pbox followed by
-- all the sboxes.
createKeySchedule :: IO KeySchedule
createKeySchedule = KeySchedule `fmap` mutableArray32FromAddrBE 1042 "\
createKeySchedule :: IO MutableArray32
createKeySchedule = mutableArray32FromAddrBE 1042 "\
\\x24\x3f\x6a\x88\x85\xa3\x08\xd3\x13\x19\x8a\x2e\x03\x70\x73\x44\
\\xa4\x09\x38\x22\x29\x9f\x31\xd0\x08\x2e\xfa\x98\xec\x4e\x6c\x89\
\\x45\x28\x21\xe6\x38\xd0\x13\x77\xbe\x54\x66\xcf\x34\xe9\x0c\x6c\

View File

@ -5,254 +5,197 @@
-- Portability : Good
-- Rewritten by Vincent Hanquez (c) 2015
-- Lars Petersen (c) 2018
--
-- Original code:
-- Crypto.Cipher.Blowfish.Primitive, copyright (c) 2012 Stijn van Drongelen
-- based on: BlowfishAux.hs (C) 2002 HardCore SoftWare, Doug Hoyte
-- (as found in Crypto-4.2.4)
{-# LANGUAGE BangPatterns #-}
module Crypto.Cipher.Blowfish.Primitive
( Context
, initBlowfish
, encrypt
, decrypt
, KeySchedule
, createKeySchedule
, freezeKeySchedule
, expandKey
, expandKeyWithSalt
, cipherBlockMutable
, eksBlowfish
) where
import Control.Monad (when)
import Control.Monad (when)
import Data.Bits
import Data.Memory.Endian
import Data.Word
import Crypto.Cipher.Blowfish.Box
import Crypto.Error
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Words
import Crypto.Internal.WordArray
import Crypto.Cipher.Blowfish.Box
newtype Context = Context Array32
-- | variable keyed blowfish state
data Context = BF (Int -> Word32) -- p
(Int -> Word32) -- sbox0
(Int -> Word32) -- sbox1
(Int -> Word32) -- sbox2
(Int -> Word32) -- sbox2
instance NFData Context where
rnf a = a `seq` ()
rnf (BF p a b c d) = p `seq` a `seq` b `seq` c `seq` d `seq` ()
-- | Encrypt blocks
--
-- Input need to be a multiple of 8 bytes
encrypt :: ByteArray ba => Context -> ba -> ba
encrypt = cipher
-- | Decrypt blocks
--
-- Input need to be a multiple of 8 bytes
decrypt :: ByteArray ba => Context -> ba -> ba
decrypt = cipher . decryptContext
decryptContext :: Context -> Context
decryptContext (BF p s0 s1 s2 s3) = BF (\i -> p (17-i)) s0 s1 s2 s3
cipher :: ByteArray ba => Context -> ba -> ba
cipher ctx b
| B.length b == 0 = B.empty
| B.length b `mod` 8 /= 0 = error "invalid data length"
| otherwise = B.mapAsWord64 (coreCrypto ctx) b
-- | Initialize a new Blowfish context from a key.
--
-- key needs to be between 0 and 448 bits.
initBlowfish :: ByteArrayAccess key => key -> CryptoFailable Context
initBlowfish key
| B.length key > (448 `div` 8) = CryptoFailed CryptoError_KeySizeInvalid
| otherwise = CryptoPassed $ unsafeDoIO $ do
ks <- createKeySchedule
expandKey ks key
freezeKeySchedule ks
| len > (448 `div` 8) = CryptoFailed CryptoError_KeySizeInvalid
| otherwise = CryptoPassed $ makeKeySchedule key (Nothing :: Maybe (Bytes, Int))
where len = B.length key
-- | Get an immutable Blowfish context by freezing a mutable key schedule.
freezeKeySchedule :: KeySchedule -> IO Context
freezeKeySchedule (KeySchedule ma) = Context `fmap` mutableArray32Freeze ma
expandKey :: (ByteArrayAccess key) => KeySchedule -> key -> IO ()
expandKey ks@(KeySchedule ma) key = do
when (B.length key > 0) $ iterKeyStream key 0 0 $ \i l r a0 a1 cont-> do
mutableArrayWriteXor32 ma i l
mutableArrayWriteXor32 ma (i + 1) r
when (i + 2 < 18) (cont a0 a1)
loop 0 0 0
where
loop i l r = do
n <- cipherBlockMutable ks (fromIntegral l `shiftL` 32 .|. fromIntegral r)
let nl = fromIntegral (n `shiftR` 32)
nr = fromIntegral (n .&. 0xffffffff)
mutableArrayWrite32 ma i nl
mutableArrayWrite32 ma (i + 1) nr
when (i < 18 + 1024) (loop (i + 2) nl nr)
expandKeyWithSalt :: (ByteArrayAccess key, ByteArrayAccess salt)
=> KeySchedule
-> key
-> salt
-> IO ()
expandKeyWithSalt ks key salt
| B.length salt == 16 = expandKeyWithSalt128 ks key (fromBE $ B.toW64BE salt 0) (fromBE $ B.toW64BE salt 8)
| otherwise = expandKeyWithSaltAny ks key salt
expandKeyWithSaltAny :: (ByteArrayAccess key, ByteArrayAccess salt)
=> KeySchedule -- ^ The key schedule
-> key -- ^ The key
-> salt -- ^ The salt
-> IO ()
expandKeyWithSaltAny ks@(KeySchedule ma) key salt = do
when (B.length key > 0) $ iterKeyStream key 0 0 $ \i l r a0 a1 cont-> do
mutableArrayWriteXor32 ma i l
mutableArrayWriteXor32 ma (i + 1) r
when (i + 2 < 18) (cont a0 a1)
-- Go through the entire key schedule overwriting the P-Array and S-Boxes
when (B.length salt > 0) $ iterKeyStream salt 0 0 $ \i l r a0 a1 cont-> do
let l' = xor l a0
let r' = xor r a1
n <- cipherBlockMutable ks (fromIntegral l' `shiftL` 32 .|. fromIntegral r')
let nl = fromIntegral (n `shiftR` 32)
nr = fromIntegral (n .&. 0xffffffff)
mutableArrayWrite32 ma i nl
mutableArrayWrite32 ma (i + 1) nr
when (i + 2 < 18 + 1024) (cont nl nr)
expandKeyWithSalt128 :: ByteArrayAccess ba
=> KeySchedule -- ^ The key schedule
-> ba -- ^ The key
-> Word64 -- ^ First word of the salt
-> Word64 -- ^ Second word of the salt
-> IO ()
expandKeyWithSalt128 ks@(KeySchedule ma) key salt1 salt2 = do
when (B.length key > 0) $ iterKeyStream key 0 0 $ \i l r a0 a1 cont-> do
mutableArrayWriteXor32 ma i l
mutableArrayWriteXor32 ma (i + 1) r
when (i + 2 < 18) (cont a0 a1)
-- Go through the entire key schedule overwriting the P-Array and S-Boxes
loop 0 salt1 salt1 salt2
where
loop i input slt1 slt2
| i == 1042 = return ()
| otherwise = do
n <- cipherBlockMutable ks input
let nl = fromIntegral (n `shiftR` 32)
nr = fromIntegral (n .&. 0xffffffff)
mutableArrayWrite32 ma i nl
mutableArrayWrite32 ma (i+1) nr
loop (i+2) (n `xor` slt2) slt2 slt1
-- | Encrypt blocks
-- | The BCrypt "expensive key schedule" version of blowfish.
--
-- Input need to be a multiple of 8 bytes
encrypt :: ByteArray ba => Context -> ba -> ba
encrypt ctx ba
| B.length ba == 0 = B.empty
| B.length ba `mod` 8 /= 0 = error "invalid data length"
| otherwise = B.mapAsWord64 (cipherBlock ctx False) ba
-- Salt must be 128 bits
-- Cost must be between 4 and 31 inclusive
-- See <https://www.usenix.org/conference/1999-usenix-annual-technical-conference/future-adaptable-password-scheme>
eksBlowfish :: (ByteArrayAccess salt, ByteArrayAccess password) => Int -> salt -> password -> Context
eksBlowfish cost salt key
| B.length salt /= 16 = error "bcrypt salt must be 16 bytes"
| otherwise = makeKeySchedule key (Just (salt, cost))
-- | Decrypt blocks
--
-- Input need to be a multiple of 8 bytes
decrypt :: ByteArray ba => Context -> ba -> ba
decrypt ctx ba
| B.length ba == 0 = B.empty
| B.length ba `mod` 8 /= 0 = error "invalid data length"
| otherwise = B.mapAsWord64 (cipherBlock ctx True) ba
-- | Encrypt or decrypt a single block of 64 bits.
--
-- The inverse argument decides whether to encrypt or decrypt.
cipherBlock :: Context -> Bool -> Word64 -> Word64
cipherBlock (Context ar) inverse input = doRound input 0
where
-- | Transform the input over 16 rounds
coreCrypto :: Context -> Word64 -> Word64
coreCrypto (BF p s0 s1 s2 s3) input = doRound input 0
where
-- transform the input over 16 rounds
doRound :: Word64 -> Int -> Word64
doRound !i roundIndex
doRound i roundIndex
| roundIndex == 16 =
let final = (fromIntegral (p 16) `shiftL` 32) .|. fromIntegral (p 17)
in rotateL (i `xor` final) 32
| otherwise =
let newr = fromIntegral (i `shiftR` 32) `xor` p roundIndex
newi = ((i `shiftL` 32) `xor` f newr) .|. fromIntegral newr
let newr = fromIntegral (i `shiftR` 32) `xor` (p roundIndex)
newi = ((i `shiftL` 32) `xor` (f newr)) .|. (fromIntegral newr)
in doRound newi (roundIndex+1)
-- | The Blowfish Feistel function F
f :: Word32 -> Word64
f t = let a = s0 (0xff .&. (t `shiftR` 24))
b = s1 (0xff .&. (t `shiftR` 16))
c = s2 (0xff .&. (t `shiftR` 8))
d = s3 (0xff .&. t)
f t = let a = s0 (fromIntegral $ (t `shiftR` 24) .&. 0xff)
b = s1 (fromIntegral $ (t `shiftR` 16) .&. 0xff)
c = s2 (fromIntegral $ (t `shiftR` 8) .&. 0xff)
d = s3 (fromIntegral $ t .&. 0xff)
in fromIntegral (((a + b) `xor` c) + d) `shiftL` 32
-- | S-Box arrays, each containing 256 32-bit words
-- The first 18 words contain the P-Array of subkeys
s0, s1, s2, s3 :: Word32 -> Word32
s0 i = arrayRead32 ar (fromIntegral i + 18)
s1 i = arrayRead32 ar (fromIntegral i + 274)
s2 i = arrayRead32 ar (fromIntegral i + 530)
s3 i = arrayRead32 ar (fromIntegral i + 786)
p :: Int -> Word32
p i | inverse = arrayRead32 ar (17 - i)
| otherwise = arrayRead32 ar i
-- | Blowfish encrypt a Word using the current state of the key schedule
cipherBlockMutable :: KeySchedule -> Word64 -> IO Word64
cipherBlockMutable (KeySchedule ma) input = doRound input 0
where
-- | Transform the input over 16 rounds
doRound !i roundIndex
| roundIndex == 16 = do
pVal1 <- mutableArrayRead32 ma 16
pVal2 <- mutableArrayRead32 ma 17
let final = (fromIntegral pVal1 `shiftL` 32) .|. fromIntegral pVal2
return $ rotateL (i `xor` final) 32
| otherwise = do
pVal <- mutableArrayRead32 ma roundIndex
let newr = fromIntegral (i `shiftR` 32) `xor` pVal
newr' <- f newr
let newi = ((i `shiftL` 32) `xor` newr') .|. fromIntegral newr
doRound newi (roundIndex+1)
-- | Create a key schedule for either plain Blowfish or the BCrypt "EKS" version
-- For the expensive version, the salt and cost factor are supplied. Salt must be
-- a 128-bit byte array.
--
-- The standard case is just a single key expansion with the salt set to zero.
makeKeySchedule :: (ByteArrayAccess key, ByteArrayAccess salt) => key-> Maybe (salt, Int) -> Context
makeKeySchedule keyBytes saltCost =
let v = unsafeDoIO $ do
mv <- createKeySchedule
case saltCost of
-- Standard blowfish
Nothing -> expandKey mv 0 0 keyBytes
-- The expensive case
Just (s, cost) -> do
let (salt1, salt2) = splitSalt s
expandKey mv salt1 salt2 keyBytes
forM_ [1..2^cost :: Int] $ \_ -> do
expandKey mv 0 0 keyBytes
expandKey mv 0 0 s
mutableArray32Freeze mv
in BF (\i -> arrayRead32 v i)
(\i -> arrayRead32 v (s0+i))
(\i -> arrayRead32 v (s1+i))
(\i -> arrayRead32 v (s2+i))
(\i -> arrayRead32 v (s3+i))
where
splitSalt s = (fromBE (B.toW64BE s 0), fromBE (B.toW64BE s 8))
-- | The Blowfish Feistel function F
f :: Word32 -> IO Word64
f t = do
a <- s0 (0xff .&. (t `shiftR` 24))
b <- s1 (0xff .&. (t `shiftR` 16))
c <- s2 (0xff .&. (t `shiftR` 8))
d <- s3 (0xff .&. t)
return (fromIntegral (((a + b) `xor` c) + d) `shiftL` 32)
-- Indices of the S-Box arrays, each containing 256 32-bit words
-- The first 18 words contain the P-Array of subkeys
s0 = 18
s1 = 274
s2 = 530
s3 = 786
-- | S-Box arrays, each containing 256 32-bit words
-- The first 18 words contain the P-Array of subkeys
s0, s1, s2, s3 :: Word32 -> IO Word32
s0 i = mutableArrayRead32 ma (fromIntegral i + 18)
s1 i = mutableArrayRead32 ma (fromIntegral i + 274)
s2 i = mutableArrayRead32 ma (fromIntegral i + 530)
s3 i = mutableArrayRead32 ma (fromIntegral i + 786)
expandKey :: ByteArrayAccess ba
=> MutableArray32 -- ^ The key schedule
-> Word64 -- ^ First word of the salt
-> Word64 -- ^ Second word of the salt
-> ba -- ^ The key
-> IO ()
expandKey mv salt1 salt2 key = do
when (len > 0) $ forM_ [0..17] $ \i -> do
let a = B.index key ((i * 4 + 0) `mod` len)
b = B.index key ((i * 4 + 1) `mod` len)
c = B.index key ((i * 4 + 2) `mod` len)
d = B.index key ((i * 4 + 3) `mod` len)
k = (fromIntegral a `shiftL` 24) .|.
(fromIntegral b `shiftL` 16) .|.
(fromIntegral c `shiftL` 8) .|.
(fromIntegral d)
mutableArrayWriteXor32 mv i k
prepare mv
return ()
where
len = B.length key
iterKeyStream :: (ByteArrayAccess x)
=> x
-> Word32
-> Word32
-> (Int -> Word32 -> Word32 -> Word32 -> Word32 -> (Word32 -> Word32 -> IO ()) -> IO ())
-> IO ()
iterKeyStream x a0 a1 g = f 0 0 a0 a1
where
len = B.length x
-- Avoiding the modulo operation when interating over the ring
-- buffer is assumed to be more efficient here. All other
-- implementations do this, too. The branch prediction shall prefer
-- the branch with the increment.
n j = if j + 1 >= len then 0 else j + 1
f i j0 b0 b1 = g i l r b0 b1 (f (i + 2) j8)
where
j1 = n j0
j2 = n j1
j3 = n j2
j4 = n j3
j5 = n j4
j6 = n j5
j7 = n j6
j8 = n j7
x0 = fromIntegral (B.index x j0)
x1 = fromIntegral (B.index x j1)
x2 = fromIntegral (B.index x j2)
x3 = fromIntegral (B.index x j3)
x4 = fromIntegral (B.index x j4)
x5 = fromIntegral (B.index x j5)
x6 = fromIntegral (B.index x j6)
x7 = fromIntegral (B.index x j7)
l = shiftL x0 24 .|. shiftL x1 16 .|. shiftL x2 8 .|. x3
r = shiftL x4 24 .|. shiftL x5 16 .|. shiftL x6 8 .|. x7
{-# INLINE iterKeyStream #-}
-- Benchmarking shows that GHC considers this function too big to inline
-- although forcing inlining causes an actual improvement.
-- It is assumed that all function calls (especially the continuation)
-- collapse into a tight loop after inlining.
-- | Go through the entire key schedule overwriting the P-Array and S-Boxes
prepare mctx = loop 0 salt1 salt1 salt2
where loop i input slt1 slt2
| i == 1042 = return ()
| otherwise = do
ninput <- coreCryptoMutable input
let (nl, nr) = w64to32 ninput
mutableArrayWrite32 mctx i nl
mutableArrayWrite32 mctx (i+1) nr
loop (i+2) (ninput `xor` slt2) slt2 slt1
-- | Blowfish encrypt a Word using the current state of the key schedule
coreCryptoMutable :: Word64 -> IO Word64
coreCryptoMutable input = doRound input 0
where doRound i roundIndex
| roundIndex == 16 = do
pVal1 <- mutableArrayRead32 mctx 16
pVal2 <- mutableArrayRead32 mctx 17
let final = (fromIntegral pVal1 `shiftL` 32) .|. fromIntegral pVal2
return $ rotateL (i `xor` final) 32
| otherwise = do
pVal <- mutableArrayRead32 mctx roundIndex
let newr = fromIntegral (i `shiftR` 32) `xor` pVal
newr' <- f newr
let newi = ((i `shiftL` 32) `xor` newr') .|. (fromIntegral newr)
doRound newi (roundIndex+1)
-- The Blowfish Feistel function F
f :: Word32 -> IO Word64
f t = do a <- mutableArrayRead32 mctx (s0 + fromIntegral ((t `shiftR` 24) .&. 0xff))
b <- mutableArrayRead32 mctx (s1 + fromIntegral ((t `shiftR` 16) .&. 0xff))
c <- mutableArrayRead32 mctx (s2 + fromIntegral ((t `shiftR` 8) .&. 0xff))
d <- mutableArrayRead32 mctx (s3 + fromIntegral (t .&. 0xff))
return (fromIntegral (((a + b) `xor` c) + d) `shiftL` 32)
where s0 = 18
s1 = 274
s2 = 530
s3 = 786

View File

@ -41,14 +41,14 @@ initialize :: (ByteArrayAccess key, ByteArrayAccess nonce)
-> nonce -- ^ the nonce (64 or 96 bits)
-> State -- ^ the initial ChaCha state
initialize nbRounds key nonce
| kLen `notElem` [16,32] = error "ChaCha: key length should be 128 or 256 bits"
| nonceLen `notElem` [8,12] = error "ChaCha: nonce length should be 64 or 96 bits"
| nbRounds `notElem` [8,12,20] = error "ChaCha: rounds should be 8, 12 or 20"
| not (kLen `elem` [16,32]) = error "ChaCha: key length should be 128 or 256 bits"
| not (nonceLen `elem` [8,12]) = error "ChaCha: nonce length should be 64 or 96 bits"
| not (nbRounds `elem` [8,12,20]) = error "ChaCha: rounds should be 8, 12 or 20"
| otherwise = unsafeDoIO $ do
stPtr <- B.alloc 132 $ \stPtr ->
B.withByteArray nonce $ \noncePtr ->
B.withByteArray key $ \keyPtr ->
ccryptonite_chacha_init stPtr nbRounds kLen keyPtr nonceLen noncePtr
ccryptonite_chacha_init stPtr (fromIntegral nbRounds) kLen keyPtr nonceLen noncePtr
return $ State stPtr
where kLen = B.length key
nonceLen = B.length nonce

View File

@ -30,11 +30,6 @@ import Crypto.Internal.Compat
import Crypto.Internal.Imports
-- | The encryption state for RC4
--
-- This type is an instance of 'ByteArrayAccess' for debugging purpose. Internal
-- layout is architecture dependent, may contain uninitialized data fragments,
-- and change in future versions. The bytearray should not be used as input to
-- cryptographic algorithms.
newtype State = State ScrubbedBytes
deriving (ByteArrayAccess,NFData)

View File

@ -33,14 +33,14 @@ initialize :: (ByteArrayAccess key, ByteArrayAccess nonce)
-> nonce -- ^ the nonce (64 or 96 bits)
-> State -- ^ the initial Salsa state
initialize nbRounds key nonce
| kLen `notElem` [16,32] = error "Salsa: key length should be 128 or 256 bits"
| nonceLen `notElem` [8,12] = error "Salsa: nonce length should be 64 or 96 bits"
| nbRounds `notElem` [8,12,20] = error "Salsa: rounds should be 8, 12 or 20"
| not (kLen `elem` [16,32]) = error "Salsa: key length should be 128 or 256 bits"
| not (nonceLen `elem` [8,12]) = error "Salsa: nonce length should be 64 or 96 bits"
| not (nbRounds `elem` [8,12,20]) = error "Salsa: rounds should be 8, 12 or 20"
| otherwise = unsafeDoIO $ do
stPtr <- B.alloc 132 $ \stPtr ->
B.withByteArray nonce $ \noncePtr ->
B.withByteArray key $ \keyPtr ->
ccryptonite_salsa_init stPtr nbRounds kLen keyPtr nonceLen noncePtr
ccryptonite_salsa_init stPtr (fromIntegral nbRounds) kLen keyPtr nonceLen noncePtr
return $ State stPtr
where kLen = B.length key
nonceLen = B.length nonce

View File

@ -7,6 +7,7 @@ module Crypto.Cipher.Twofish
import Crypto.Cipher.Twofish.Primitive
import Crypto.Cipher.Types
import Crypto.Cipher.Utils
import Crypto.Internal.Imports
newtype Twofish128 = Twofish128 Twofish

View File

@ -8,12 +8,15 @@ module Crypto.Cipher.Twofish.Primitive
) where
import Crypto.Error
import Crypto.Internal.ByteArray (ByteArray)
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.WordArray
import Crypto.Internal.Words
import Data.Word
import Data.Int
import Data.Bits
import Data.List
import Control.Monad
-- Based on the Golang referance implementation
-- https://github.com/golang/crypto/blob/master/twofish/twofish.go
@ -203,7 +206,7 @@ sWords key = sWord
data Column = Zero | One | Two | Three deriving (Show, Eq, Enum, Bounded)
genSboxes :: KeyPackage ba -> [Word8] -> (Array32, Array32, Array32, Array32)
genSboxes :: ByteArray ba => KeyPackage ba -> [Word8] -> (Array32, Array32, Array32, Array32)
genSboxes keyPackage ws = (mkArray b0', mkArray b1', mkArray b2', mkArray b3')
where range = [0..255]
mkArray = array32 256

View File

@ -21,8 +21,6 @@ module Crypto.Cipher.Types
-- , cfb8Decrypt
-- * AEAD functions
, AEADMode(..)
, CCM_M(..)
, CCM_L(..)
, module Crypto.Cipher.Types.AEAD
-- * Initial Vector type and constructor
, IV

View File

@ -27,24 +27,24 @@ data AEADModeImpl st = AEADModeImpl
-- | Authenticated Encryption with Associated Data algorithms
data AEAD cipher = forall st . AEAD
{ aeadModeImpl :: AEADModeImpl st
, aeadState :: !st
, aeadState :: st
}
-- | Append some header information to an AEAD context
aeadAppendHeader :: ByteArrayAccess aad => AEAD cipher -> aad -> AEAD cipher
aeadAppendHeader (AEAD impl st) aad = AEAD impl $ aeadImplAppendHeader impl st aad
aeadAppendHeader (AEAD impl st) aad = AEAD impl $ (aeadImplAppendHeader impl) st aad
-- | Encrypt some data and update the AEAD context
aeadEncrypt :: ByteArray ba => AEAD cipher -> ba -> (ba, AEAD cipher)
aeadEncrypt (AEAD impl st) ba = second (AEAD impl) $ aeadImplEncrypt impl st ba
aeadEncrypt (AEAD impl st) ba = second (AEAD impl) $ (aeadImplEncrypt impl) st ba
-- | Decrypt some data and update the AEAD context
aeadDecrypt :: ByteArray ba => AEAD cipher -> ba -> (ba, AEAD cipher)
aeadDecrypt (AEAD impl st) ba = second (AEAD impl) $ aeadImplDecrypt impl st ba
aeadDecrypt (AEAD impl st) ba = second (AEAD impl) $ (aeadImplDecrypt impl) st ba
-- | Finalize the AEAD context and return the authentication tag
aeadFinalize :: AEAD cipher -> Int -> AuthTag
aeadFinalize (AEAD impl st) = aeadImplFinalize impl st
aeadFinalize (AEAD impl st) n = (aeadImplFinalize impl) st n
-- | Simple AEAD encryption
aeadSimpleEncrypt :: (ByteArrayAccess aad, ByteArray ba)

View File

@ -14,15 +14,12 @@ module Crypto.Cipher.Types.Base
, Cipher(..)
, AuthTag(..)
, AEADMode(..)
, CCM_M(..)
, CCM_L(..)
, DataUnitOffset
) where
import Data.Word
import Crypto.Internal.ByteArray (Bytes, ByteArrayAccess, ByteArray)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.DeepSeq
import Crypto.Error
-- | Different specifier for key size in bytes
@ -37,18 +34,15 @@ type DataUnitOffset = Word32
-- | Authentication Tag for AE cipher mode
newtype AuthTag = AuthTag { unAuthTag :: Bytes }
deriving (Show, ByteArrayAccess, NFData)
deriving (Show, ByteArrayAccess)
instance Eq AuthTag where
(AuthTag a) == (AuthTag b) = B.constEq a b
data CCM_M = CCM_M4 | CCM_M6 | CCM_M8 | CCM_M10 | CCM_M12 | CCM_M14 | CCM_M16 deriving (Show, Eq)
data CCM_L = CCM_L2 | CCM_L3 | CCM_L4 deriving (Show, Eq)
-- | AEAD Mode
data AEADMode =
AEAD_OCB -- OCB3
| AEAD_CCM Int CCM_M CCM_L
| AEAD_CCM
| AEAD_EAX
| AEAD_CWC
| AEAD_GCM

View File

@ -37,6 +37,7 @@ module Crypto.Cipher.Types.Block
) where
import Data.Word
import Data.Monoid
import Crypto.Error
import Crypto.Cipher.Types.Base
import Crypto.Cipher.Types.GF
@ -163,7 +164,7 @@ nullIV = toIV undefined
-- | Increment an IV by a number.
--
-- Assume the IV is in Big Endian format.
ivAdd :: IV c -> Int -> IV c
ivAdd :: BlockCipher c => IV c -> Int -> IV c
ivAdd (IV b) i = IV $ copy b
where copy :: ByteArray bs => bs -> bs
copy bs = B.copyAndFreeze bs $ loop i (B.length bs - 1)

View File

@ -4,6 +4,7 @@ module Crypto.Cipher.Utils
import Crypto.Error
import Crypto.Cipher.Types
import Crypto.Internal.Imports
import Data.ByteArray as BA

View File

@ -12,17 +12,18 @@
{-# LANGUAGE ForeignFunctionInterface #-}
module Crypto.Cipher.XSalsa
( initialize
, derive
, combine
, generate
, State
) where
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, ScrubbedBytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Foreign.Ptr
import Foreign.Storable
import Foreign.C.Types
import Crypto.Cipher.Salsa hiding (initialize)
-- | Initialize a new XSalsa context with the number of rounds,
@ -35,41 +36,15 @@ initialize :: (ByteArrayAccess key, ByteArrayAccess nonce)
initialize nbRounds key nonce
| kLen /= 32 = error "XSalsa: key length should be 256 bits"
| nonceLen /= 24 = error "XSalsa: nonce length should be 192 bits"
| nbRounds `notElem` [8,12,20] = error "XSalsa: rounds should be 8, 12 or 20"
| not (nbRounds `elem` [8,12,20]) = error "XSalsa: rounds should be 8, 12 or 20"
| otherwise = unsafeDoIO $ do
stPtr <- B.alloc 132 $ \stPtr ->
B.withByteArray nonce $ \noncePtr ->
B.withByteArray key $ \keyPtr ->
ccryptonite_xsalsa_init stPtr nbRounds kLen keyPtr nonceLen noncePtr
ccryptonite_xsalsa_init stPtr (fromIntegral nbRounds) kLen keyPtr nonceLen noncePtr
return $ State stPtr
where kLen = B.length key
nonceLen = B.length nonce
-- | Use an already initialized context and new nonce material to derive another
-- XSalsa context.
--
-- This allows a multi-level cascade where a first key @k1@ and nonce @n1@ is
-- used to get @HState(k1,n1)@, and this value is then used as key @k2@ to build
-- @XSalsa(k2,n2)@. Function 'initialize' is to be called with the first 192
-- bits of @n1|n2@, and the call to @derive@ should add the remaining 128 bits.
--
-- The output context always uses the same number of rounds as the input
-- context.
derive :: ByteArrayAccess nonce
=> State -- ^ base XSalsa state
-> nonce -- ^ the remainder nonce (128 bits)
-> State -- ^ the new XSalsa state
derive (State stPtr') nonce
| nonceLen /= 16 = error "XSalsa: nonce length should be 128 bits"
| otherwise = unsafeDoIO $ do
stPtr <- B.copy stPtr' $ \stPtr ->
B.withByteArray nonce $ \noncePtr ->
ccryptonite_xsalsa_derive stPtr nonceLen noncePtr
return $ State stPtr
where nonceLen = B.length nonce
foreign import ccall "cryptonite_xsalsa_init"
ccryptonite_xsalsa_init :: Ptr State -> Int -> Int -> Ptr Word8 -> Int -> Ptr Word8 -> IO ()
foreign import ccall "cryptonite_xsalsa_derive"
ccryptonite_xsalsa_derive :: Ptr State -> Int -> Ptr Word8 -> IO ()

View File

@ -44,7 +44,7 @@ compute' g = MP . foldl' (step $ g) (B.replicate bsz 0) . chunks . pad (ZERO bsz
where
(hd, tl) = B.splitAt bsz msg
-- | Compute Miyaguchi-Preneel one way compress using the inferred block cipher.
-- | Compute Miyaguchi-Preneel one way compress using the infered block cipher.
-- Only safe when KEY-SIZE equals to BLOCK-SIZE.
--
-- Simple usage /mp' msg :: MiyaguchiPreneel AES128/

View File

@ -77,7 +77,7 @@ split hashAlg rng expandTimes src
diffuse hashAlg lastBlock blockSize
fillRandomBlock g blockPtr = do
let (rand :: Bytes, g') = randomBytesGenerate blockSize g
B.withByteArray rand $ \randPtr -> memCopy blockPtr randPtr blockSize
B.withByteArray rand $ \randPtr -> memCopy blockPtr randPtr (fromIntegral blockSize)
return g'
-- | Merge previously diffused data back to the original data.

View File

@ -6,7 +6,7 @@
-- Portability : unknown
--
-- Various cryptographic padding commonly used for block ciphers
-- or asymmetric systems.
-- or assymetric systems.
--
module Crypto.Data.Padding
( Format(..)

View File

@ -8,7 +8,6 @@
-- Elliptic Curve Cryptography
--
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ScopedTypeVariables #-}
@ -22,7 +21,6 @@ module Crypto.ECC
, EllipticCurve(..)
, EllipticCurveDH(..)
, EllipticCurveArith(..)
, EllipticCurveBasepointArith(..)
, KeyPair(..)
, SharedSecret(..)
) where
@ -33,18 +31,17 @@ import qualified Crypto.ECC.Simple.Types as Simple
import qualified Crypto.ECC.Simple.Prim as Simple
import Crypto.Random
import Crypto.Error
import Crypto.Internal.Proxy
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess, ScrubbedBytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Number.Basic (numBits)
import Crypto.Number.Serialize (i2ospOf_, os2ip)
import qualified Crypto.Number.Serialize.LE as LE
import qualified Crypto.PubKey.Curve25519 as X25519
import qualified Crypto.PubKey.Curve448 as X448
import Data.Function (on)
import Data.ByteArray (convert)
import Data.Data (Data())
import Data.Kind (Type)
import Data.Proxy
import Data.Typeable (Typeable())
-- | An elliptic curve key pair composed of the private part (a scalar), and
-- the associated point.
@ -58,10 +55,10 @@ newtype SharedSecret = SharedSecret ScrubbedBytes
class EllipticCurve curve where
-- | Point on an Elliptic Curve
type Point curve :: Type
type Point curve :: *
-- | Scalar in the Elliptic Curve domain
type Scalar curve :: Type
type Scalar curve :: *
-- | Generate a new random scalar on the curve.
-- The scalar will represent a number between 1 and the order of the curve non included
@ -102,7 +99,7 @@ class EllipticCurve curve => EllipticCurveDH curve where
-- value or an exception.
ecdh :: proxy curve -> Scalar curve -> Point curve -> CryptoFailable SharedSecret
class (EllipticCurve curve, Eq (Point curve)) => EllipticCurveArith curve where
class EllipticCurve curve => EllipticCurveArith curve where
-- | Add points on a curve
pointAdd :: proxy curve -> Point curve -> Point curve -> Point curve
@ -115,40 +112,11 @@ class (EllipticCurve curve, Eq (Point curve)) => EllipticCurveArith curve where
-- -- | Scalar Inverse
-- scalarInverse :: Scalar curve -> Scalar curve
class (EllipticCurveArith curve, Eq (Scalar curve)) => EllipticCurveBasepointArith curve where
-- | Get the curve order size in bits
curveOrderBits :: proxy curve -> Int
-- | Multiply a scalar with the curve base point
pointBaseSmul :: proxy curve -> Scalar curve -> Point curve
-- | Multiply the point @p@ with @s2@ and add a lifted to curve value @s1@
pointsSmulVarTime :: proxy curve -> Scalar curve -> Scalar curve -> Point curve -> Point curve
pointsSmulVarTime prx s1 s2 p = pointAdd prx (pointBaseSmul prx s1) (pointSmul prx s2 p)
-- | Encode an elliptic curve scalar into big-endian form
encodeScalar :: ByteArray bs => proxy curve -> Scalar curve -> bs
-- | Try to decode the big-endian form of an elliptic curve scalar
decodeScalar :: ByteArray bs => proxy curve -> bs -> CryptoFailable (Scalar curve)
-- | Convert an elliptic curve scalar to an integer
scalarToInteger :: proxy curve -> Scalar curve -> Integer
-- | Try to create an elliptic curve scalar from an integer
scalarFromInteger :: proxy curve -> Integer -> CryptoFailable (Scalar curve)
-- | Add two scalars and reduce modulo the curve order
scalarAdd :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | Multiply two scalars and reduce modulo the curve order
scalarMul :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | P256 Curve
--
-- also known as P256
data Curve_P256R1 = Curve_P256R1
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_P256R1 where
type Point Curve_P256R1 = P256.Point
@ -166,11 +134,11 @@ instance EllipticCurve Curve_P256R1 where
uncompressed = B.singleton 4
xy = P256.pointToBinary p
decodePoint _ mxy = case B.uncons mxy of
Nothing -> CryptoFailed CryptoError_PointSizeInvalid
Nothing -> CryptoFailed $ CryptoError_PointSizeInvalid
Just (m,xy)
-- uncompressed
| m == 4 -> P256.pointFromBinary xy
| otherwise -> CryptoFailed CryptoError_PointFormatInvalid
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid
instance EllipticCurveArith Curve_P256R1 where
pointAdd _ a b = P256.pointAdd a b
@ -181,19 +149,8 @@ instance EllipticCurveDH Curve_P256R1 where
ecdhRaw _ s p = SharedSecret $ P256.pointDh s p
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
instance EllipticCurveBasepointArith Curve_P256R1 where
curveOrderBits _ = 256
pointBaseSmul _ = P256.toPoint
pointsSmulVarTime _ = P256.pointsMulVarTime
encodeScalar _ = P256.scalarToBinary
decodeScalar _ = P256.scalarFromBinary
scalarToInteger _ = P256.scalarToInteger
scalarFromInteger _ = P256.scalarFromInteger
scalarAdd _ = P256.scalarAdd
scalarMul _ = P256.scalarMul
data Curve_P384R1 = Curve_P384R1
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_P384R1 where
type Point Curve_P384R1 = Simple.Point Simple.SEC_p384r1
@ -215,19 +172,8 @@ instance EllipticCurveDH Curve_P384R1 where
where
prx = Proxy :: Proxy Simple.SEC_p384r1
instance EllipticCurveBasepointArith Curve_P384R1 where
curveOrderBits _ = 384
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_P521R1 = Curve_P521R1
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_P521R1 where
type Point Curve_P521R1 = Simple.Point Simple.SEC_p521r1
@ -249,19 +195,8 @@ instance EllipticCurveDH Curve_P521R1 where
where
prx = Proxy :: Proxy Simple.SEC_p521r1
instance EllipticCurveBasepointArith Curve_P521R1 where
curveOrderBits _ = 521
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_X25519 = Curve_X25519
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_X25519 where
type Point Curve_X25519 = X25519.PublicKey
@ -280,7 +215,7 @@ instance EllipticCurveDH Curve_X25519 where
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
data Curve_X448 = Curve_X448
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_X448 where
type Point Curve_X448 = X448.PublicKey
@ -299,7 +234,7 @@ instance EllipticCurveDH Curve_X448 where
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
data Curve_Edwards25519 = Curve_Edwards25519
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance EllipticCurve Curve_Edwards25519 where
type Point Curve_Edwards25519 = Edwards25519.Point
@ -316,22 +251,6 @@ instance EllipticCurveArith Curve_Edwards25519 where
pointNegate _ p = Edwards25519.pointNegate p
pointSmul _ s p = Edwards25519.pointMul s p
instance EllipticCurveBasepointArith Curve_Edwards25519 where
curveOrderBits _ = 253
pointBaseSmul _ = Edwards25519.toPoint
pointsSmulVarTime _ = Edwards25519.pointsMulVarTime
encodeScalar _ = B.reverse . Edwards25519.scalarEncode
decodeScalar _ bs
| B.length bs == 32 = Edwards25519.scalarDecodeLong (B.reverse bs)
| otherwise = CryptoFailed CryptoError_SecretKeySizeInvalid
scalarToInteger _ s = LE.os2ip (Edwards25519.scalarEncode s :: B.Bytes)
scalarFromInteger _ i =
case LE.i2ospOf 32 i of
Nothing -> CryptoFailed CryptoError_SecretKeySizeInvalid
Just bs -> Edwards25519.scalarDecodeLong (bs :: B.Bytes)
scalarAdd _ = Edwards25519.scalarAdd
scalarMul _ = Edwards25519.scalarMul
checkNonZeroDH :: SharedSecret -> CryptoFailable SharedSecret
checkNonZeroDH s@(SharedSecret b)
| B.constAllZero b = CryptoFailed CryptoError_ScalarMultiplicationInvalid
@ -353,7 +272,7 @@ encodeECPoint (Simple.Point x y) = B.concat [uncompressed,xb,yb]
decodeECPoint :: (Simple.Curve curve, ByteArray bs) => bs -> CryptoFailable (Simple.Point curve)
decodeECPoint mxy = case B.uncons mxy of
Nothing -> CryptoFailed CryptoError_PointSizeInvalid
Nothing -> CryptoFailed $ CryptoError_PointSizeInvalid
Just (m,xy)
-- uncompressed
| m == 4 ->
@ -362,47 +281,4 @@ decodeECPoint mxy = case B.uncons mxy of
x = os2ip xb
y = os2ip yb
in Simple.pointFromIntegers (x,y)
| otherwise -> CryptoFailed CryptoError_PointFormatInvalid
ecPointsMulVarTime :: forall curve . Simple.Curve curve
=> Simple.Scalar curve
-> Simple.Scalar curve -> Simple.Point curve
-> Simple.Point curve
ecPointsMulVarTime n1 = Simple.pointAddTwoMuls n1 g
where g = Simple.curveEccG $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarFromBinary :: forall curve bs . (Simple.Curve curve, ByteArrayAccess bs)
=> bs -> CryptoFailable (Simple.Scalar curve)
ecScalarFromBinary ba
| B.length ba /= size = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar $ os2ip ba)
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToBinary :: forall curve bs . (Simple.Curve curve, ByteArray bs)
=> Simple.Scalar curve -> bs
ecScalarToBinary (Simple.Scalar s) = i2ospOf_ size s
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarFromInteger :: forall curve . Simple.Curve curve
=> Integer -> CryptoFailable (Simple.Scalar curve)
ecScalarFromInteger s
| numBits s > nb = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar s)
where nb = 8 * ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToInteger :: Simple.Scalar curve -> Integer
ecScalarToInteger (Simple.Scalar s) = s
ecCurveOrderBytes :: Simple.Curve c => proxy c -> Int
ecCurveOrderBytes prx = (numBits n + 7) `div` 8
where n = Simple.curveEccN $ Simple.curveParameters prx
ecScalarAdd :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarAdd (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a + b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarMul :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarMul (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a * b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid

View File

@ -73,12 +73,15 @@ module Crypto.ECC.Edwards25519
, pointsMulVarTime
) where
import Data.Bits
import Data.Word
import Foreign.C.Types
import Foreign.Ptr
import Foreign.Storable
import Crypto.Error
import Crypto.Internal.ByteArray (Bytes, ScrubbedBytes, withByteArray)
import Crypto.Internal.ByteArray (ByteArrayAccess, Bytes,
ScrubbedBytes, withByteArray)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Compat
import Crypto.Internal.Imports
@ -283,45 +286,45 @@ pointsMulVarTime (Scalar s1) (Scalar s2) (Point p) =
withByteArray p $ \pp ->
ed25519_base_double_scalarmul_vartime out ps1 pp ps2
foreign import ccall unsafe "cryptonite_ed25519_scalar_eq"
foreign import ccall "cryptonite_ed25519_scalar_eq"
ed25519_scalar_eq :: Ptr Scalar
-> Ptr Scalar
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_scalar_encode"
foreign import ccall "cryptonite_ed25519_scalar_encode"
ed25519_scalar_encode :: Ptr Word8
-> Ptr Scalar
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_decode_long"
foreign import ccall "cryptonite_ed25519_scalar_decode_long"
ed25519_scalar_decode_long :: Ptr Scalar
-> Ptr Word8
-> CSize
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_add"
foreign import ccall "cryptonite_ed25519_scalar_add"
ed25519_scalar_add :: Ptr Scalar -- sum
-> Ptr Scalar -- a
-> Ptr Scalar -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_mul"
foreign import ccall "cryptonite_ed25519_scalar_mul"
ed25519_scalar_mul :: Ptr Scalar -- out
-> Ptr Scalar -- a
-> Ptr Scalar -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_encode"
foreign import ccall "cryptonite_ed25519_point_encode"
ed25519_point_encode :: Ptr Word8
-> Ptr Point
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_decode_vartime"
foreign import ccall "cryptonite_ed25519_point_decode_vartime"
ed25519_point_decode_vartime :: Ptr Point
-> Ptr Word8
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_point_eq"
foreign import ccall "cryptonite_ed25519_point_eq"
ed25519_point_eq :: Ptr Point
-> Ptr Point
-> IO CInt
@ -330,23 +333,23 @@ foreign import ccall "cryptonite_ed25519_point_has_prime_order"
ed25519_point_has_prime_order :: Ptr Point
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_point_negate"
foreign import ccall "cryptonite_ed25519_point_negate"
ed25519_point_negate :: Ptr Point -- minus_a
-> Ptr Point -- a
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_add"
foreign import ccall "cryptonite_ed25519_point_add"
ed25519_point_add :: Ptr Point -- sum
-> Ptr Point -- a
-> Ptr Point -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_double"
foreign import ccall "cryptonite_ed25519_point_double"
ed25519_point_double :: Ptr Point -- two_a
-> Ptr Point -- a
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_mul_by_cofactor"
foreign import ccall "cryptonite_ed25519_point_mul_by_cofactor"
ed25519_point_mul_by_cofactor :: Ptr Point -- eight_a
-> Ptr Point -- a
-> IO ()

View File

@ -17,7 +17,8 @@ module Crypto.ECC.Simple.Prim
) where
import Data.Maybe
import Data.Proxy
import Crypto.Internal.Imports
import Crypto.Internal.Proxy
import Crypto.Number.ModArithmetic
import Crypto.Number.F2m
import Crypto.Number.Generate (generateBetween)

View File

@ -84,28 +84,28 @@ data CurveParameters curve = CurveParameters
, curveEccG :: Point curve -- ^ base point
, curveEccN :: Integer -- ^ order of G
, curveEccH :: Integer -- ^ cofactor
} deriving (Show,Eq,Data)
} deriving (Show,Eq,Data,Typeable)
newtype CurveBinaryParam = CurveBinaryParam Integer
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
newtype CurvePrimeParam = CurvePrimeParam Integer
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
data CurveType =
CurveBinary CurveBinaryParam
| CurvePrime CurvePrimeParam
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
-- | ECC Private Number
newtype Scalar curve = Scalar Integer
deriving (Show,Read,Eq,Data,NFData)
deriving (Show,Read,Eq,Data,Typeable,NFData)
-- | Define a point on a curve.
data Point curve =
Point Integer Integer
| PointO -- ^ Point at Infinity
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
instance NFData (Point curve) where
rnf (Point x y) = x `seq` y `seq` ()

View File

@ -23,6 +23,7 @@ import qualified Control.Exception as E
import Data.Data
import Basement.Monad (MonadFailure(..))
import Crypto.Internal.Imports
-- | Enumeration of all possible errors that can be found in this library
data CryptoError =
@ -52,7 +53,7 @@ data CryptoError =
| CryptoError_SaltTooSmall
| CryptoError_OutputLengthTooSmall
| CryptoError_OutputLengthTooBig
deriving (Show,Eq,Enum,Data)
deriving (Show,Eq,Enum,Data,Typeable)
instance E.Exception CryptoError
@ -82,7 +83,7 @@ instance Applicative CryptoFailable where
pure a = CryptoPassed a
(<*>) fm m = fm >>= \p -> m >>= \r2 -> return (p r2)
instance Monad CryptoFailable where
return = pure
return a = CryptoPassed a
(>>=) m1 m2 = do
case m1 of
CryptoPassed a -> m2 a

View File

@ -28,45 +28,36 @@ module Crypto.Hash
-- * Hash methods parametrized by algorithm
, hashInitWith
, hashWith
, hashPrefixWith
-- * Hash methods
, hashInit
, hashUpdates
, hashUpdate
, hashFinalize
, hashFinalizePrefix
, hashBlockSize
, hashDigestSize
, hash
, hashPrefix
, hashlazy
, hashPutContext
, hashGetContext
-- * Hash algorithms
, module Crypto.Hash.Algorithms
) where
import Basement.Types.OffsetSize (CountOf (..))
import Basement.Block (Block, unsafeFreeze)
import Basement.Block.Mutable (copyFromPtr, new)
import Basement.UArray (UArray, new, unsafeFreeze)
import Basement.UArray.Mutable (copyFromPtr)
import Control.Monad
import Crypto.Internal.Compat (unsafeDoIO)
import Crypto.Hash.Types
import Crypto.Hash.Algorithms
import Foreign.Ptr (Ptr, plusPtr)
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray)
import Foreign.Ptr (Ptr)
import Crypto.Internal.ByteArray (ByteArrayAccess)
import qualified Crypto.Internal.ByteArray as B
import qualified Data.ByteString.Lazy as L
import Data.Word (Word8)
import Data.Int (Int32)
-- | Hash a strict bytestring into a digest.
hash :: (ByteArrayAccess ba, HashAlgorithm a) => ba -> Digest a
hash bs = hashFinalize $ hashUpdate hashInit bs
-- | Hash the first N bytes of a bytestring, with code path independent from N.
hashPrefix :: (ByteArrayAccess ba, HashAlgorithmPrefix a) => ba -> Int -> Digest a
hashPrefix = hashFinalizePrefix hashInit
-- | Hash a lazy bytestring into a digest.
hashlazy :: HashAlgorithm a => L.ByteString -> Digest a
hashlazy lbs = hashFinalize $ hashUpdates hashInit (L.toChunks lbs)
@ -91,17 +82,9 @@ hashUpdates :: forall a ba . (HashAlgorithm a, ByteArrayAccess ba)
hashUpdates c l
| null ls = c
| otherwise = Context $ B.copyAndFreeze c $ \(ctx :: Ptr (Context a)) ->
mapM_ (\b -> B.withByteArray b (processBlocks ctx (B.length b))) ls
mapM_ (\b -> B.withByteArray b $ \d -> hashInternalUpdate ctx d (fromIntegral $ B.length b)) ls
where
ls = filter (not . B.null) l
-- process the data in 2GB chunks to fit in uint32_t and Int on 32 bit systems
processBlocks ctx bytesLeft dataPtr
| bytesLeft == 0 = return ()
| otherwise = do
hashInternalUpdate ctx dataPtr (fromIntegral actuallyProcessed)
processBlocks ctx (bytesLeft - actuallyProcessed) (dataPtr `plusPtr` actuallyProcessed)
where
actuallyProcessed = min bytesLeft (fromIntegral (maxBound :: Int32))
-- | Finalize a context and return a digest.
hashFinalize :: forall a . HashAlgorithm a
@ -112,24 +95,6 @@ hashFinalize !c =
((!_) :: B.Bytes) <- B.copy c $ \(ctx :: Ptr (Context a)) -> hashInternalFinalize ctx dig
return ()
-- | Update the context with the first N bytes of a bytestring and return the
-- digest. The code path is independent from N but much slower than a normal
-- 'hashUpdate'. The function can be called for the last bytes of a message, in
-- order to exclude a variable padding, without leaking the padding length. The
-- begining of the message, never impacted by the padding, should preferably go
-- through 'hashUpdate' for better performance.
hashFinalizePrefix :: forall a ba . (HashAlgorithmPrefix a, ByteArrayAccess ba)
=> Context a
-> ba
-> Int
-> Digest a
hashFinalizePrefix !c b len =
Digest $ B.allocAndFreeze (hashDigestSize (undefined :: a)) $ \(dig :: Ptr (Digest a)) -> do
((!_) :: B.Bytes) <- B.copy c $ \(ctx :: Ptr (Context a)) ->
B.withByteArray b $ \d ->
hashInternalFinalizePrefix ctx d (fromIntegral $ B.length b) (fromIntegral len) dig
return ()
-- | Initialize a new context for a specified hash algorithm
hashInitWith :: HashAlgorithm alg => alg -> Context alg
hashInitWith _ = hashInit
@ -138,10 +103,6 @@ hashInitWith _ = hashInit
hashWith :: (ByteArrayAccess ba, HashAlgorithm alg) => alg -> ba -> Digest alg
hashWith _ = hash
-- | Run the 'hashPrefix' function but takes an explicit hash algorithm parameter
hashPrefixWith :: (ByteArrayAccess ba, HashAlgorithmPrefix alg) => alg -> ba -> Int -> Digest alg
hashPrefixWith _ = hashPrefix
-- | Try to transform a bytearray into a Digest of specific algorithm.
--
-- If the digest is not the right size for the algorithm specified, then
@ -149,28 +110,15 @@ hashPrefixWith _ = hashPrefix
digestFromByteString :: forall a ba . (HashAlgorithm a, ByteArrayAccess ba) => ba -> Maybe (Digest a)
digestFromByteString = from undefined
where
from :: a -> ba -> Maybe (Digest a)
from :: HashAlgorithm a => a -> ba -> Maybe (Digest a)
from alg bs
| B.length bs == (hashDigestSize alg) = Just $ Digest $ unsafeDoIO $ copyBytes bs
| otherwise = Nothing
copyBytes :: ba -> IO (Block Word8)
copyBytes :: ba -> IO (UArray Word8)
copyBytes ba = do
muArray <- new count
B.withByteArray ba $ \ptr -> copyFromPtr ptr muArray 0 count
B.withByteArray ba $ \ptr -> copyFromPtr ptr count muArray
unsafeFreeze muArray
where
count = CountOf (B.length ba)
hashPutContext :: forall a ba. (HashAlgorithmResumable a, ByteArray ba) => Context a -> ba
hashPutContext !c = B.allocAndFreeze (hashInternalContextSize (undefined :: a)) $ \(ptr :: Ptr Word8) ->
B.withByteArray c $ \(ctx :: Ptr (Context a)) -> hashInternalPutContextBE ctx ptr
hashGetContext :: forall a ba. (HashAlgorithmResumable a, ByteArrayAccess ba) => ba -> Maybe (Context a)
hashGetContext = from undefined
where
from :: a -> ba -> Maybe (Context a)
from alg bs
| B.length bs == (hashInternalContextSize alg) = Just $ Context $ B.allocAndFreeze (B.length bs) $ \(ctx :: Ptr (Context a)) ->
B.withByteArray bs $ \ptr -> hashInternalGetContextBE ptr ctx
| otherwise = Nothing

View File

@ -1,3 +1,4 @@
{-# LANGUAGE CPP #-}
-- |
-- Module : Crypto.Hash.Algorithms
-- License : BSD-style
@ -9,8 +10,6 @@
--
module Crypto.Hash.Algorithms
( HashAlgorithm
, HashAlgorithmPrefix
, HashAlgorithmResumable
-- * Hash algorithms
, Blake2s_160(..)
, Blake2s_224(..)
@ -43,10 +42,12 @@ module Crypto.Hash.Algorithms
, SHA3_256(..)
, SHA3_384(..)
, SHA3_512(..)
#if MIN_VERSION_base(4,7,0)
, SHAKE128(..)
, SHAKE256(..)
, Blake2b(..), Blake2bp(..)
, Blake2s(..), Blake2sp(..)
#endif
, Skein256_224(..)
, Skein256_256(..)
, Skein512_224(..)
@ -56,7 +57,7 @@ module Crypto.Hash.Algorithms
, Whirlpool(..)
) where
import Crypto.Hash.Types (HashAlgorithm, HashAlgorithmPrefix, HashAlgorithmResumable)
import Crypto.Hash.Types (HashAlgorithm)
import Crypto.Hash.Blake2s
import Crypto.Hash.Blake2sp
import Crypto.Hash.Blake2b
@ -77,5 +78,7 @@ import Crypto.Hash.Tiger
import Crypto.Hash.Skein256
import Crypto.Hash.Skein512
import Crypto.Hash.Whirlpool
#if MIN_VERSION_base(4,7,0)
import Crypto.Hash.SHAKE
import Crypto.Hash.Blake2
#endif

View File

@ -42,8 +42,9 @@ module Crypto.Hash.Blake2
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
import GHC.TypeLits (Nat, KnownNat)
import GHC.TypeLits (Nat, KnownNat, natVal)
import Crypto.Internal.Nat
-- | Fast and secure alternative to SHA1 and HMAC-SHA1
@ -57,7 +58,7 @@ import Crypto.Internal.Nat
-- * Blake2s 256
--
data Blake2s (bitlen :: Nat) = Blake2s
deriving (Show,Data)
deriving (Show, Typeable)
instance (IsDivisibleBy8 bitlen, KnownNat bitlen, IsAtLeast bitlen 8, IsAtMost bitlen 256)
=> HashAlgorithm (Blake2s bitlen)
@ -92,7 +93,7 @@ foreign import ccall unsafe "cryptonite_blake2s_finalize"
-- * Blake2b 512
--
data Blake2b (bitlen :: Nat) = Blake2b
deriving (Show,Data)
deriving (Show, Typeable)
instance (IsDivisibleBy8 bitlen, KnownNat bitlen, IsAtLeast bitlen 8, IsAtMost bitlen 512)
=> HashAlgorithm (Blake2b bitlen)
@ -115,7 +116,7 @@ foreign import ccall unsafe "cryptonite_blake2b_finalize"
c_blake2b_finalize :: Ptr (Context a) -> Word32 -> Ptr (Digest a) -> IO ()
data Blake2sp (bitlen :: Nat) = Blake2sp
deriving (Show,Data)
deriving (Show, Typeable)
instance (IsDivisibleBy8 bitlen, KnownNat bitlen, IsAtLeast bitlen 8, IsAtMost bitlen 256)
=> HashAlgorithm (Blake2sp bitlen)
@ -138,7 +139,7 @@ foreign import ccall unsafe "cryptonite_blake2sp_finalize"
c_blake2sp_finalize :: Ptr (Context a) -> Word32 -> Ptr (Digest a) -> IO ()
data Blake2bp (bitlen :: Nat) = Blake2bp
deriving (Show,Data)
deriving (Show, Typeable)
instance (IsDivisibleBy8 bitlen, KnownNat bitlen, IsAtLeast bitlen 8, IsAtMost bitlen 512)
=> HashAlgorithm (Blake2bp bitlen)

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Blake2b
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Blake2b (160 bits) cryptographic hash algorithm
data Blake2b_160 = Blake2b_160
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2b_160 where
type HashBlockSize Blake2b_160 = 128
@ -39,7 +40,7 @@ instance HashAlgorithm Blake2b_160 where
-- | Blake2b (224 bits) cryptographic hash algorithm
data Blake2b_224 = Blake2b_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2b_224 where
type HashBlockSize Blake2b_224 = 128
@ -54,7 +55,7 @@ instance HashAlgorithm Blake2b_224 where
-- | Blake2b (256 bits) cryptographic hash algorithm
data Blake2b_256 = Blake2b_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2b_256 where
type HashBlockSize Blake2b_256 = 128
@ -69,7 +70,7 @@ instance HashAlgorithm Blake2b_256 where
-- | Blake2b (384 bits) cryptographic hash algorithm
data Blake2b_384 = Blake2b_384
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2b_384 where
type HashBlockSize Blake2b_384 = 128
@ -84,7 +85,7 @@ instance HashAlgorithm Blake2b_384 where
-- | Blake2b (512 bits) cryptographic hash algorithm
data Blake2b_512 = Blake2b_512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2b_512 where
type HashBlockSize Blake2b_512 = 128

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Blake2bp
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Blake2bp (512 bits) cryptographic hash algorithm
data Blake2bp_512 = Blake2bp_512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2bp_512 where
type HashBlockSize Blake2bp_512 = 128

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Blake2s
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Blake2s (160 bits) cryptographic hash algorithm
data Blake2s_160 = Blake2s_160
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2s_160 where
type HashBlockSize Blake2s_160 = 64
@ -39,7 +40,7 @@ instance HashAlgorithm Blake2s_160 where
-- | Blake2s (224 bits) cryptographic hash algorithm
data Blake2s_224 = Blake2s_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2s_224 where
type HashBlockSize Blake2s_224 = 64
@ -54,7 +55,7 @@ instance HashAlgorithm Blake2s_224 where
-- | Blake2s (256 bits) cryptographic hash algorithm
data Blake2s_256 = Blake2s_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2s_256 where
type HashBlockSize Blake2s_256 = 64

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Blake2sp
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Blake2sp (224 bits) cryptographic hash algorithm
data Blake2sp_224 = Blake2sp_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2sp_224 where
type HashBlockSize Blake2sp_224 = 64
@ -39,7 +40,7 @@ instance HashAlgorithm Blake2sp_224 where
-- | Blake2sp (256 bits) cryptographic hash algorithm
data Blake2sp_256 = Blake2sp_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Blake2sp_256 where
type HashBlockSize Blake2sp_256 = 64

View File

@ -24,11 +24,6 @@ import qualified Crypto.Internal.ByteArray as B
import Foreign.Ptr
-- | A Mutable hash context
--
-- This type is an instance of 'B.ByteArrayAccess' for debugging purpose.
-- Internal layout is architecture dependent, may contain uninitialized data
-- fragments, and change in future versions. The bytearray should not be used
-- as input to cryptographic algorithms.
newtype MutableContext a = MutableContext B.Bytes
deriving (B.ByteArrayAccess)

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Keccak
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Keccak (224 bits) cryptographic hash algorithm
data Keccak_224 = Keccak_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Keccak_224 where
type HashBlockSize Keccak_224 = 144
@ -37,13 +38,9 @@ instance HashAlgorithm Keccak_224 where
hashInternalUpdate = c_keccak_update
hashInternalFinalize p = c_keccak_finalize p 224
instance HashAlgorithmResumable Keccak_224 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | Keccak (256 bits) cryptographic hash algorithm
data Keccak_256 = Keccak_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Keccak_256 where
type HashBlockSize Keccak_256 = 136
@ -56,13 +53,9 @@ instance HashAlgorithm Keccak_256 where
hashInternalUpdate = c_keccak_update
hashInternalFinalize p = c_keccak_finalize p 256
instance HashAlgorithmResumable Keccak_256 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | Keccak (384 bits) cryptographic hash algorithm
data Keccak_384 = Keccak_384
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Keccak_384 where
type HashBlockSize Keccak_384 = 104
@ -75,13 +68,9 @@ instance HashAlgorithm Keccak_384 where
hashInternalUpdate = c_keccak_update
hashInternalFinalize p = c_keccak_finalize p 384
instance HashAlgorithmResumable Keccak_384 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | Keccak (512 bits) cryptographic hash algorithm
data Keccak_512 = Keccak_512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Keccak_512 where
type HashBlockSize Keccak_512 = 72
@ -94,10 +83,6 @@ instance HashAlgorithm Keccak_512 where
hashInternalUpdate = c_keccak_update
hashInternalFinalize p = c_keccak_finalize p 512
instance HashAlgorithmResumable Keccak_512 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
foreign import ccall unsafe "cryptonite_keccak_init"
c_keccak_init :: Ptr (Context a) -> Word32 -> IO ()
@ -107,9 +92,3 @@ foreign import ccall "cryptonite_keccak_update"
foreign import ccall unsafe "cryptonite_keccak_finalize"
c_keccak_finalize :: Ptr (Context a) -> Word32 -> Ptr (Digest a) -> IO ()
foreign import ccall unsafe "cryptonite_sha3_ctx_to_be"
c_sha3_ctx_to_be :: Ptr (Context a) -> Ptr Word8 -> IO ()
foreign import ccall unsafe "cryptonite_sha3_be_to_ctx"
c_sha3_be_to_ctx :: Ptr Word8 -> Ptr (Context a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.MD2 ( MD2 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | MD2 cryptographic hash algorithm
data MD2 = MD2
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm MD2 where
type HashBlockSize MD2 = 16

View File

@ -17,11 +17,12 @@ module Crypto.Hash.MD4 ( MD4 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | MD4 cryptographic hash algorithm
data MD4 = MD4
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm MD4 where
type HashBlockSize MD4 = 64

View File

@ -17,11 +17,12 @@ module Crypto.Hash.MD5 ( MD5 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | MD5 cryptographic hash algorithm
data MD5 = MD5
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm MD5 where
type HashBlockSize MD5 = 64
@ -34,9 +35,6 @@ instance HashAlgorithm MD5 where
hashInternalUpdate = c_md5_update
hashInternalFinalize = c_md5_finalize
instance HashAlgorithmPrefix MD5 where
hashInternalFinalizePrefix = c_md5_finalize_prefix
foreign import ccall unsafe "cryptonite_md5_init"
c_md5_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_md5_update"
foreign import ccall unsafe "cryptonite_md5_finalize"
c_md5_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_md5_finalize_prefix"
c_md5_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.RIPEMD160 ( RIPEMD160 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | RIPEMD160 cryptographic hash algorithm
data RIPEMD160 = RIPEMD160
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm RIPEMD160 where
type HashBlockSize RIPEMD160 = 64

View File

@ -17,11 +17,12 @@ module Crypto.Hash.SHA1 ( SHA1 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA1 cryptographic hash algorithm
data SHA1 = SHA1
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA1 where
type HashBlockSize SHA1 = 64
@ -34,9 +35,6 @@ instance HashAlgorithm SHA1 where
hashInternalUpdate = c_sha1_update
hashInternalFinalize = c_sha1_finalize
instance HashAlgorithmPrefix SHA1 where
hashInternalFinalizePrefix = c_sha1_finalize_prefix
foreign import ccall unsafe "cryptonite_sha1_init"
c_sha1_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_sha1_update"
foreign import ccall unsafe "cryptonite_sha1_finalize"
c_sha1_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_sha1_finalize_prefix"
c_sha1_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.SHA224 ( SHA224 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA224 cryptographic hash algorithm
data SHA224 = SHA224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA224 where
type HashBlockSize SHA224 = 64
@ -34,9 +35,6 @@ instance HashAlgorithm SHA224 where
hashInternalUpdate = c_sha224_update
hashInternalFinalize = c_sha224_finalize
instance HashAlgorithmPrefix SHA224 where
hashInternalFinalizePrefix = c_sha224_finalize_prefix
foreign import ccall unsafe "cryptonite_sha224_init"
c_sha224_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_sha224_update"
foreign import ccall unsafe "cryptonite_sha224_finalize"
c_sha224_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_sha224_finalize_prefix"
c_sha224_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.SHA256 ( SHA256 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA256 cryptographic hash algorithm
data SHA256 = SHA256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA256 where
type HashBlockSize SHA256 = 64
@ -34,9 +35,6 @@ instance HashAlgorithm SHA256 where
hashInternalUpdate = c_sha256_update
hashInternalFinalize = c_sha256_finalize
instance HashAlgorithmPrefix SHA256 where
hashInternalFinalizePrefix = c_sha256_finalize_prefix
foreign import ccall unsafe "cryptonite_sha256_init"
c_sha256_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_sha256_update"
foreign import ccall unsafe "cryptonite_sha256_finalize"
c_sha256_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_sha256_finalize_prefix"
c_sha256_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -19,12 +19,13 @@ module Crypto.Hash.SHA3
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA3 (224 bits) cryptographic hash algorithm
data SHA3_224 = SHA3_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA3_224 where
type HashBlockSize SHA3_224 = 144
@ -37,13 +38,9 @@ instance HashAlgorithm SHA3_224 where
hashInternalUpdate = c_sha3_update
hashInternalFinalize p = c_sha3_finalize p 224
instance HashAlgorithmResumable SHA3_224 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | SHA3 (256 bits) cryptographic hash algorithm
data SHA3_256 = SHA3_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA3_256 where
type HashBlockSize SHA3_256 = 136
@ -56,13 +53,9 @@ instance HashAlgorithm SHA3_256 where
hashInternalUpdate = c_sha3_update
hashInternalFinalize p = c_sha3_finalize p 256
instance HashAlgorithmResumable SHA3_256 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | SHA3 (384 bits) cryptographic hash algorithm
data SHA3_384 = SHA3_384
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA3_384 where
type HashBlockSize SHA3_384 = 104
@ -75,13 +68,9 @@ instance HashAlgorithm SHA3_384 where
hashInternalUpdate = c_sha3_update
hashInternalFinalize p = c_sha3_finalize p 384
instance HashAlgorithmResumable SHA3_384 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | SHA3 (512 bits) cryptographic hash algorithm
data SHA3_512 = SHA3_512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA3_512 where
type HashBlockSize SHA3_512 = 72
@ -94,10 +83,6 @@ instance HashAlgorithm SHA3_512 where
hashInternalUpdate = c_sha3_update
hashInternalFinalize p = c_sha3_finalize p 512
instance HashAlgorithmResumable SHA3_512 where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
foreign import ccall unsafe "cryptonite_sha3_init"
c_sha3_init :: Ptr (Context a) -> Word32 -> IO ()
@ -107,9 +92,3 @@ foreign import ccall "cryptonite_sha3_update"
foreign import ccall unsafe "cryptonite_sha3_finalize"
c_sha3_finalize :: Ptr (Context a) -> Word32 -> Ptr (Digest a) -> IO ()
foreign import ccall unsafe "cryptonite_sha3_ctx_to_be"
c_sha3_ctx_to_be :: Ptr (Context a) -> Ptr Word8 -> IO ()
foreign import ccall unsafe "cryptonite_sha3_be_to_ctx"
c_sha3_be_to_ctx :: Ptr Word8 -> Ptr (Context a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.SHA384 ( SHA384 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA384 cryptographic hash algorithm
data SHA384 = SHA384
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA384 where
type HashBlockSize SHA384 = 128
@ -34,9 +35,6 @@ instance HashAlgorithm SHA384 where
hashInternalUpdate = c_sha384_update
hashInternalFinalize = c_sha384_finalize
instance HashAlgorithmPrefix SHA384 where
hashInternalFinalizePrefix = c_sha384_finalize_prefix
foreign import ccall unsafe "cryptonite_sha384_init"
c_sha384_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_sha384_update"
foreign import ccall unsafe "cryptonite_sha384_finalize"
c_sha384_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_sha384_finalize_prefix"
c_sha384_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -17,11 +17,12 @@ module Crypto.Hash.SHA512 ( SHA512 (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA512 cryptographic hash algorithm
data SHA512 = SHA512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA512 where
type HashBlockSize SHA512 = 128
@ -34,9 +35,6 @@ instance HashAlgorithm SHA512 where
hashInternalUpdate = c_sha512_update
hashInternalFinalize = c_sha512_finalize
instance HashAlgorithmPrefix SHA512 where
hashInternalFinalizePrefix = c_sha512_finalize_prefix
foreign import ccall unsafe "cryptonite_sha512_init"
c_sha512_init :: Ptr (Context a)-> IO ()
@ -45,6 +43,3 @@ foreign import ccall "cryptonite_sha512_update"
foreign import ccall unsafe "cryptonite_sha512_finalize"
c_sha512_finalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
foreign import ccall "cryptonite_sha512_finalize_prefix"
c_sha512_finalize_prefix :: Ptr (Context a) -> Ptr Word8 -> Word32 -> Word32 -> Ptr (Digest a) -> IO ()

View File

@ -19,12 +19,13 @@ module Crypto.Hash.SHA512t
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | SHA512t (224 bits) cryptographic hash algorithm
data SHA512t_224 = SHA512t_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA512t_224 where
type HashBlockSize SHA512t_224 = 128
@ -39,7 +40,7 @@ instance HashAlgorithm SHA512t_224 where
-- | SHA512t (256 bits) cryptographic hash algorithm
data SHA512t_256 = SHA512t_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm SHA512t_256 where
type HashBlockSize SHA512t_256 = 128

View File

@ -12,44 +12,37 @@
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Crypto.Hash.SHAKE
( SHAKE128 (..), SHAKE256 (..), HashSHAKE (..)
( SHAKE128 (..), SHAKE256 (..)
) where
import Control.Monad (when)
import Crypto.Hash.Types
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Storable (Storable(..))
import Data.Bits
import Data.Data
import Foreign.Ptr (Ptr)
import Data.Typeable
import Data.Word (Word8, Word32)
import GHC.TypeLits (Nat, KnownNat, type (+))
import Data.Proxy (Proxy(..))
import GHC.TypeLits (Nat, KnownNat, natVal)
import Crypto.Internal.Nat
-- | Type class of SHAKE algorithms.
class HashAlgorithm a => HashSHAKE a where
-- | Alternate finalization needed for cSHAKE
cshakeInternalFinalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
-- | Get the digest bit length
cshakeOutputLength :: a -> Int
-- | SHAKE128 (128 bits) extendable output function. Supports an arbitrary
-- digest size, to be specified as a type parameter of kind 'Nat'.
-- digest size (multiple of 8 bits), to be specified as a type parameter
-- of kind 'Nat'.
--
-- Note: outputs from @'SHAKE128' n@ and @'SHAKE128' m@ for the same input are
-- correlated (one being a prefix of the other). Results are unrelated to
-- 'SHAKE256' results.
data SHAKE128 (bitlen :: Nat) = SHAKE128
deriving (Show, Data)
deriving (Show, Typeable)
instance KnownNat bitlen => HashAlgorithm (SHAKE128 bitlen) where
instance (IsDivisibleBy8 bitlen, KnownNat bitlen) => HashAlgorithm (SHAKE128 bitlen) where
type HashBlockSize (SHAKE128 bitlen) = 168
type HashDigestSize (SHAKE128 bitlen) = Div8 (bitlen + 7)
type HashDigestSize (SHAKE128 bitlen) = Div8 bitlen
type HashInternalContextSize (SHAKE128 bitlen) = 376
hashBlockSize _ = 168
hashDigestSize _ = byteLen (Proxy :: Proxy bitlen)
@ -58,26 +51,19 @@ instance KnownNat bitlen => HashAlgorithm (SHAKE128 bitlen) where
hashInternalUpdate = c_sha3_update
hashInternalFinalize = shakeFinalizeOutput (Proxy :: Proxy bitlen)
instance KnownNat bitlen => HashSHAKE (SHAKE128 bitlen) where
cshakeInternalFinalize = cshakeFinalizeOutput (Proxy :: Proxy bitlen)
cshakeOutputLength _ = integralNatVal (Proxy :: Proxy bitlen)
instance KnownNat bitlen => HashAlgorithmResumable (SHAKE128 bitlen) where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
-- | SHAKE256 (256 bits) extendable output function. Supports an arbitrary
-- digest size, to be specified as a type parameter of kind 'Nat'.
-- digest size (multiple of 8 bits), to be specified as a type parameter
-- of kind 'Nat'.
--
-- Note: outputs from @'SHAKE256' n@ and @'SHAKE256' m@ for the same input are
-- correlated (one being a prefix of the other). Results are unrelated to
-- 'SHAKE128' results.
data SHAKE256 (bitlen :: Nat) = SHAKE256
deriving (Show, Data)
deriving (Show, Typeable)
instance KnownNat bitlen => HashAlgorithm (SHAKE256 bitlen) where
instance (IsDivisibleBy8 bitlen, KnownNat bitlen) => HashAlgorithm (SHAKE256 bitlen) where
type HashBlockSize (SHAKE256 bitlen) = 136
type HashDigestSize (SHAKE256 bitlen) = Div8 (bitlen + 7)
type HashDigestSize (SHAKE256 bitlen) = Div8 bitlen
type HashInternalContextSize (SHAKE256 bitlen) = 344
hashBlockSize _ = 136
hashDigestSize _ = byteLen (Proxy :: Proxy bitlen)
@ -86,15 +72,7 @@ instance KnownNat bitlen => HashAlgorithm (SHAKE256 bitlen) where
hashInternalUpdate = c_sha3_update
hashInternalFinalize = shakeFinalizeOutput (Proxy :: Proxy bitlen)
instance KnownNat bitlen => HashSHAKE (SHAKE256 bitlen) where
cshakeInternalFinalize = cshakeFinalizeOutput (Proxy :: Proxy bitlen)
cshakeOutputLength _ = integralNatVal (Proxy :: Proxy bitlen)
instance KnownNat bitlen => HashAlgorithmResumable (SHAKE256 bitlen) where
hashInternalPutContextBE = c_sha3_ctx_to_be
hashInternalGetContextBE = c_sha3_be_to_ctx
shakeFinalizeOutput :: KnownNat bitlen
shakeFinalizeOutput :: (IsDivisibleBy8 bitlen, KnownNat bitlen)
=> proxy bitlen
-> Ptr (Context a)
-> Ptr (Digest a)
@ -102,26 +80,6 @@ shakeFinalizeOutput :: KnownNat bitlen
shakeFinalizeOutput d ctx dig = do
c_sha3_finalize_shake ctx
c_sha3_output ctx dig (byteLen d)
shakeTruncate d (castPtr dig)
cshakeFinalizeOutput :: KnownNat bitlen
=> proxy bitlen
-> Ptr (Context a)
-> Ptr (Digest a)
-> IO ()
cshakeFinalizeOutput d ctx dig = do
c_sha3_finalize_cshake ctx
c_sha3_output ctx dig (byteLen d)
shakeTruncate d (castPtr dig)
shakeTruncate :: KnownNat bitlen => proxy bitlen -> Ptr Word8 -> IO ()
shakeTruncate d ptr =
when (bits > 0) $ do
byte <- peekElemOff ptr index
pokeElemOff ptr index (byte .&. mask)
where
mask = (1 `shiftL` bits) - 1
(index, bits) = integralNatVal d `divMod` 8
foreign import ccall unsafe "cryptonite_sha3_init"
c_sha3_init :: Ptr (Context a) -> Word32 -> IO ()
@ -132,14 +90,5 @@ foreign import ccall "cryptonite_sha3_update"
foreign import ccall unsafe "cryptonite_sha3_finalize_shake"
c_sha3_finalize_shake :: Ptr (Context a) -> IO ()
foreign import ccall unsafe "cryptonite_sha3_finalize_cshake"
c_sha3_finalize_cshake :: Ptr (Context a) -> IO ()
foreign import ccall unsafe "cryptonite_sha3_output"
c_sha3_output :: Ptr (Context a) -> Ptr (Digest a) -> Word32 -> IO ()
foreign import ccall unsafe "cryptonite_sha3_ctx_to_be"
c_sha3_ctx_to_be :: Ptr (Context a) -> Ptr Word8 -> IO ()
foreign import ccall unsafe "cryptonite_sha3_be_to_ctx"
c_sha3_be_to_ctx :: Ptr Word8 -> Ptr (Context a) -> IO ()

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Skein256
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Skein256 (224 bits) cryptographic hash algorithm
data Skein256_224 = Skein256_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein256_224 where
type HashBlockSize Skein256_224 = 32
@ -39,7 +40,7 @@ instance HashAlgorithm Skein256_224 where
-- | Skein256 (256 bits) cryptographic hash algorithm
data Skein256_256 = Skein256_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein256_256 where
type HashBlockSize Skein256_256 = 32

View File

@ -19,12 +19,13 @@ module Crypto.Hash.Skein512
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Skein512 (224 bits) cryptographic hash algorithm
data Skein512_224 = Skein512_224
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein512_224 where
type HashBlockSize Skein512_224 = 64
@ -39,7 +40,7 @@ instance HashAlgorithm Skein512_224 where
-- | Skein512 (256 bits) cryptographic hash algorithm
data Skein512_256 = Skein512_256
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein512_256 where
type HashBlockSize Skein512_256 = 64
@ -54,7 +55,7 @@ instance HashAlgorithm Skein512_256 where
-- | Skein512 (384 bits) cryptographic hash algorithm
data Skein512_384 = Skein512_384
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein512_384 where
type HashBlockSize Skein512_384 = 64
@ -69,7 +70,7 @@ instance HashAlgorithm Skein512_384 where
-- | Skein512 (512 bits) cryptographic hash algorithm
data Skein512_512 = Skein512_512
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Skein512_512 where
type HashBlockSize Skein512_512 = 64

View File

@ -17,11 +17,12 @@ module Crypto.Hash.Tiger ( Tiger (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Tiger cryptographic hash algorithm
data Tiger = Tiger
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Tiger where
type HashBlockSize Tiger = 64

View File

@ -8,14 +8,10 @@
-- Crypto hash types definitions
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
module Crypto.Hash.Types
( HashAlgorithm(..)
, HashAlgorithmPrefix(..)
, HashAlgorithmResumable(..)
, Context(..)
, Digest(..)
) where
@ -23,15 +19,10 @@ module Crypto.Hash.Types
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArrayAccess, Bytes)
import qualified Crypto.Internal.ByteArray as B
import Control.Monad.ST
import Data.Char (digitToInt, isHexDigit)
import Foreign.Ptr (Ptr)
import Basement.Block (Block, unsafeFreeze)
import Basement.Block.Mutable (MutableBlock, new, unsafeWrite)
import Basement.UArray (UArray)
import Basement.NormalForm (deepseq)
import Basement.Types.OffsetSize (CountOf(..), Offset(..))
import GHC.TypeLits (Nat)
import Data.Data (Data)
-- | Class representing hashing algorithms.
--
@ -61,31 +52,12 @@ class HashAlgorithm a where
-- | Finalize the context and set the digest raw memory to the right value
hashInternalFinalize :: Ptr (Context a) -> Ptr (Digest a) -> IO ()
-- | Hashing algorithms with a constant-time implementation.
class HashAlgorithm a => HashAlgorithmPrefix a where
-- | Update the context with the first N bytes of a buffer and finalize this
-- context. The code path executed is independent from N and depends only
-- on the complete buffer length.
hashInternalFinalizePrefix :: Ptr (Context a)
-> Ptr Word8 -> Word32
-> Word32
-> Ptr (Digest a)
-> IO ()
class HashAlgorithm a => HashAlgorithmResumable a where
hashInternalPutContextBE :: Ptr (Context a) -> Ptr Word8 -> IO ()
hashInternalGetContextBE :: Ptr Word8 -> Ptr (Context a) -> IO ()
{-
hashContextGetAlgorithm :: HashAlgorithm a => Context a -> a
hashContextGetAlgorithm = undefined
-}
-- | Represent a context for a given hash algorithm.
--
-- This type is an instance of 'ByteArrayAccess' for debugging purpose. Internal
-- layout is architecture dependent, may contain uninitialized data fragments,
-- and change in future versions. The bytearray should not be used as input to
-- cryptographic algorithms.
newtype Context a = Context Bytes
deriving (ByteArrayAccess,NFData)
@ -98,8 +70,8 @@ newtype Context a = Context Bytes
--
-- Creating a digest from a bytearray is also possible with function
-- 'Crypto.Hash.digestFromByteString'.
newtype Digest a = Digest (Block Word8)
deriving (Eq,Ord,ByteArrayAccess, Data)
newtype Digest a = Digest (UArray Word8)
deriving (Eq,Ord,ByteArrayAccess)
instance NFData (Digest a) where
rnf (Digest u) = u `deepseq` ()
@ -107,21 +79,3 @@ instance NFData (Digest a) where
instance Show (Digest a) where
show (Digest bs) = map (toEnum . fromIntegral)
$ B.unpack (B.convertToBase B.Base16 bs :: Bytes)
instance HashAlgorithm a => Read (Digest a) where
readsPrec _ str = runST $ do mut <- new (CountOf len)
loop mut len str
where
len = hashDigestSize (undefined :: a)
loop :: MutableBlock Word8 s -> Int -> String -> ST s [(Digest a, String)]
loop mut 0 cs = (\b -> [(Digest b, cs)]) <$> unsafeFreeze mut
loop _ _ [] = return []
loop _ _ [_] = return []
loop mut n (c:(d:ds))
| not (isHexDigit c) = return []
| not (isHexDigit d) = return []
| otherwise = do
let w8 = fromIntegral $ digitToInt c * 16 + digitToInt d
unsafeWrite mut (Offset $ len - n) w8
loop mut (n - 1) ds

View File

@ -17,11 +17,12 @@ module Crypto.Hash.Whirlpool ( Whirlpool (..) ) where
import Crypto.Hash.Types
import Foreign.Ptr (Ptr)
import Data.Data
import Data.Typeable
import Data.Word (Word8, Word32)
-- | Whirlpool cryptographic hash algorithm
data Whirlpool = Whirlpool
deriving (Show,Data)
deriving (Show,Data,Typeable)
instance HashAlgorithm Whirlpool where
type HashBlockSize Whirlpool = 64

View File

@ -1,53 +0,0 @@
-- |
-- Module : Crypto.Internal.Builder
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : stable
-- Portability : Good
--
-- Delaying and merging ByteArray allocations. This is similar to module
-- "Data.ByteArray.Pack" except the total length is computed automatically based
-- on what is appended.
--
{-# LANGUAGE BangPatterns #-}
module Crypto.Internal.Builder
( Builder
, buildAndFreeze
, builderLength
, byte
, bytes
, zero
) where
import Data.ByteArray (ByteArray, ByteArrayAccess)
import qualified Data.ByteArray as B
import Data.Memory.PtrMethods (memSet)
import Foreign.Ptr (Ptr, plusPtr)
import Foreign.Storable (poke)
import Crypto.Internal.Imports hiding (empty)
data Builder = Builder !Int (Ptr Word8 -> IO ()) -- size and initializer
instance Semigroup Builder where
(Builder s1 f1) <> (Builder s2 f2) = Builder (s1 + s2) f
where f p = f1 p >> f2 (p `plusPtr` s1)
builderLength :: Builder -> Int
builderLength (Builder s _) = s
buildAndFreeze :: ByteArray ba => Builder -> ba
buildAndFreeze (Builder s f) = B.allocAndFreeze s f
byte :: Word8 -> Builder
byte !b = Builder 1 (`poke` b)
bytes :: ByteArrayAccess ba => ba -> Builder
bytes bs = Builder (B.length bs) (B.copyByteArrayToPtr bs)
zero :: Int -> Builder
zero s = if s > 0 then Builder s (\p -> memSet p 0 s) else empty
empty :: Builder
empty = Builder 0 (const $ return ())

View File

@ -23,21 +23,15 @@ module Crypto.Internal.CompatPrim
, convert4To32
) where
import GHC.Prim
#if !defined(ARCH_IS_LITTLE_ENDIAN) && !defined(ARCH_IS_BIG_ENDIAN)
import Data.Memory.Endian (getSystemEndianness, Endianness(..))
#endif
#if __GLASGOW_HASKELL__ >= 902
import GHC.Prim
#else
import GHC.Prim hiding (Word32#)
type Word32# = Word#
#endif
-- | Byteswap Word# to or from Big Endian
--
-- On a big endian machine, this function is a nop.
be32Prim :: Word32# -> Word32#
be32Prim :: Word# -> Word#
#ifdef ARCH_IS_LITTLE_ENDIAN
be32Prim = byteswap32Prim
#elif defined(ARCH_IS_BIG_ENDIAN)
@ -49,7 +43,7 @@ be32Prim w = if getSystemEndianness == LittleEndian then byteswap32Prim w else w
-- | Byteswap Word# to or from Little Endian
--
-- On a little endian machine, this function is a nop.
le32Prim :: Word32# -> Word32#
le32Prim :: Word# -> Word#
#ifdef ARCH_IS_LITTLE_ENDIAN
le32Prim w = w
#elif defined(ARCH_IS_BIG_ENDIAN)
@ -60,11 +54,16 @@ le32Prim w = if getSystemEndianness == LittleEndian then w else byteswap32Prim w
-- | Simple compatibility for byteswap the lower 32 bits of a Word#
-- at the primitive level
byteswap32Prim :: Word32# -> Word32#
#if __GLASGOW_HASKELL__ >= 902
byteswap32Prim w = wordToWord32# (byteSwap32# (word32ToWord# w))
#else
byteswap32Prim :: Word# -> Word#
#if __GLASGOW_HASKELL__ >= 708
byteswap32Prim w = byteSwap32# w
#else
byteswap32Prim w =
let !a = uncheckedShiftL# w 24#
!b = and# (uncheckedShiftL# w 8#) 0x00ff0000##
!c = and# (uncheckedShiftRL# w 8#) 0x0000ff00##
!d = and# (uncheckedShiftRL# w 24#) 0x000000ff##
in or# a (or# b (or# c d))
#endif
-- | Combine 4 word8 [a,b,c,d] to a word32 representing [a,b,c,d]

View File

@ -5,15 +5,11 @@
-- Stability : experimental
-- Portability : unknown
--
{-# LANGUAGE CPP #-}
module Crypto.Internal.Imports
( module X
) where
import Data.Word as X
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup as X (Semigroup(..))
#endif
import Control.Applicative as X
import Control.Monad as X (forM, forM_, void)
import Control.Arrow as X (first, second)

View File

@ -9,21 +9,20 @@ module Crypto.Internal.Nat
, type IsAtMost, type IsAtLeast
, byteLen
, integralNatVal
, type IsDiv8
, type Div8
, type Mod8
) where
import GHC.TypeLits
byteLen :: (KnownNat bitlen, Num a) => proxy bitlen -> a
byteLen d = fromInteger ((natVal d + 7) `div` 8)
byteLen :: (KnownNat bitlen, IsDivisibleBy8 bitlen, Num a) => proxy bitlen -> a
byteLen d = fromInteger (natVal d `div` 8)
integralNatVal :: (KnownNat bitlen, Num a) => proxy bitlen -> a
integralNatVal = fromInteger . natVal
type family IsLE (bitlen :: Nat) (n :: Nat) (c :: Bool) where
IsLE _ _ 'True = 'True
IsLE bitlen n 'True = 'True
#if MIN_VERSION_base(4,9,0)
IsLE bitlen n 'False = TypeError
( ('Text "bitlen " ':<>: 'ShowType bitlen ':<>: 'Text " is greater than " ':<>: 'ShowType n)
@ -38,7 +37,7 @@ type family IsLE (bitlen :: Nat) (n :: Nat) (c :: Bool) where
type IsAtMost (bitlen :: Nat) (n :: Nat) = IsLE bitlen n (bitlen <=? n) ~ 'True
type family IsGE (bitlen :: Nat) (n :: Nat) (c :: Bool) where
IsGE _ _ 'True = 'True
IsGE bitlen n 'True = 'True
#if MIN_VERSION_base(4,9,0)
IsGE bitlen n 'False = TypeError
( ('Text "bitlen " ':<>: 'ShowType bitlen ':<>: 'Text " is lesser than " ':<>: 'ShowType n)
@ -121,7 +120,7 @@ type family Div8 (bitLen :: Nat) where
Div8 n = 8 + Div8 (n - 64)
type family IsDiv8 (bitLen :: Nat) (n :: Nat) where
IsDiv8 _ 0 = 'True
IsDiv8 bitLen 0 = 'True
#if MIN_VERSION_base(4,9,0)
IsDiv8 bitLen 1 = TypeError ('Text "bitLen " ':<>: 'ShowType bitLen ':<>: 'Text " is not divisible by 8")
IsDiv8 bitLen 2 = TypeError ('Text "bitLen " ':<>: 'ShowType bitLen ':<>: 'Text " is not divisible by 8")
@ -131,15 +130,15 @@ type family IsDiv8 (bitLen :: Nat) (n :: Nat) where
IsDiv8 bitLen 6 = TypeError ('Text "bitLen " ':<>: 'ShowType bitLen ':<>: 'Text " is not divisible by 8")
IsDiv8 bitLen 7 = TypeError ('Text "bitLen " ':<>: 'ShowType bitLen ':<>: 'Text " is not divisible by 8")
#else
IsDiv8 _ 1 = 'False
IsDiv8 _ 2 = 'False
IsDiv8 _ 3 = 'False
IsDiv8 _ 4 = 'False
IsDiv8 _ 5 = 'False
IsDiv8 _ 6 = 'False
IsDiv8 _ 7 = 'False
IsDiv8 bitLen 1 = 'False
IsDiv8 bitLen 2 = 'False
IsDiv8 bitLen 3 = 'False
IsDiv8 bitLen 4 = 'False
IsDiv8 bitLen 5 = 'False
IsDiv8 bitLen 6 = 'False
IsDiv8 bitLen 7 = 'False
#endif
IsDiv8 _ n = IsDiv8 n (Mod8 n)
IsDiv8 bitLen n = IsDiv8 n (Mod8 n)
type family Mod8 (n :: Nat) where
Mod8 0 = 0
@ -208,6 +207,4 @@ type family Mod8 (n :: Nat) where
Mod8 63 = 7
Mod8 n = Mod8 (n - 64)
-- | ensure the given `bitlen` is divisible by 8
--
type IsDivisibleBy8 bitLen = IsDiv8 bitLen bitLen ~ 'True

13
Crypto/Internal/Proxy.hs Normal file
View File

@ -0,0 +1,13 @@
-- |
-- Module : Crypto.Internal.Proxy
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
module Crypto.Internal.Proxy
( Proxy(..)
) where
-- | A type witness for 'a' as phantom type
data Proxy a = Proxy

View File

@ -25,7 +25,7 @@ module Crypto.KDF.Argon2
, hash
) where
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess)
import Crypto.Internal.ByteArray (ScrubbedBytes, ByteArray, ByteArrayAccess)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Error
import Control.Monad (when)

View File

@ -11,7 +11,7 @@
-- >>> validatePassword password bcryptHash
-- >>> True
-- >>> let otherPassword = B.pack "otherpassword"
-- >>> otherHash <- hashPassword 12 otherPassword :: IO B.ByteString
-- >>> otherHash <- hashPassword 12 otherPasssword :: IO B.ByteString
-- >>> validatePassword otherPassword otherHash
-- >>> True
--
@ -52,16 +52,11 @@ module Crypto.KDF.BCrypt
)
where
import Control.Monad (forM_, unless, when)
import Crypto.Cipher.Blowfish.Primitive (Context, createKeySchedule,
encrypt, expandKey,
expandKeyWithSalt,
freezeKeySchedule)
import Crypto.Internal.Compat
import Crypto.Random (MonadRandom, getRandomBytes)
import Data.ByteArray (ByteArray, ByteArrayAccess,
Bytes)
import qualified Data.ByteArray as B
import Control.Monad (unless, when)
import Crypto.Cipher.Blowfish.Primitive (eksBlowfish, encrypt)
import Crypto.Random (MonadRandom, getRandomBytes)
import Data.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Data.ByteArray as B
import Data.ByteArray.Encoding
import Data.Char
@ -141,7 +136,7 @@ rawHash _ cost salt password = B.take 23 hash -- Another compatibility bug. Igno
-- Truncate the password if necessary and append a null byte for C compatibility
key = B.snoc (B.take 72 password) 0
ctx = expensiveBlowfishContext key salt cost
ctx = eksBlowfish cost salt key
-- The BCrypt plaintext: "OrpheanBeholderScryDoubt"
orpheanBeholder = B.pack [79,114,112,104,101,97,110,66,101,104,111,108,100,101,114,83,99,114,121,68,111,117,98,116]
@ -164,26 +159,10 @@ parseBCryptHash bc = do
costTens = fromIntegral (B.index bc 4) - zero
costUnits = fromIntegral (B.index bc 5) - zero
version = chr (fromIntegral (B.index bc 2))
cost = costUnits + 10*costTens :: Int
cost = costUnits + (if costTens == 0 then 0 else 10^costTens) :: Int
decodeSaltHash saltHash = do
let (s, h) = B.splitAt 22 saltHash
salt <- convertFromBase Base64OpenBSD s
hash <- convertFromBase Base64OpenBSD h
return (salt, hash)
-- | Create a key schedule for the BCrypt "EKS" version.
--
-- Salt must be a 128-bit byte array.
-- Cost must be between 4 and 31 inclusive
-- See <https://www.usenix.org/conference/1999-usenix-annual-technical-conference/future-adaptable-password-scheme>
expensiveBlowfishContext :: (ByteArrayAccess key, ByteArrayAccess salt) => key-> salt -> Int -> Context
expensiveBlowfishContext keyBytes saltBytes cost
| B.length saltBytes /= 16 = error "bcrypt salt must be 16 bytes"
| otherwise = unsafeDoIO $ do
ks <- createKeySchedule
expandKeyWithSalt ks keyBytes saltBytes
forM_ [1..2^cost :: Int] $ \_ -> do
expandKey ks keyBytes
expandKey ks saltBytes
freezeKeySchedule ks

View File

@ -1,187 +0,0 @@
-- |
-- Module : Crypto.KDF.BCryptPBKDF
-- License : BSD-style
-- Stability : experimental
-- Portability : Good
--
-- Port of the bcrypt_pbkdf key derivation function from OpenBSD
-- as described at <http://man.openbsd.org/bcrypt_pbkdf.3>.
module Crypto.KDF.BCryptPBKDF
( Parameters (..)
, generate
, hashInternal
)
where
import Basement.Block (MutableBlock)
import qualified Basement.Block as Block
import qualified Basement.Block.Mutable as Block
import Basement.Monad (PrimState)
import Basement.Types.OffsetSize (CountOf (..), Offset (..))
import Control.Exception (finally)
import Control.Monad (when)
import qualified Crypto.Cipher.Blowfish.Box as Blowfish
import qualified Crypto.Cipher.Blowfish.Primitive as Blowfish
import Crypto.Hash.Algorithms (SHA512 (..))
import Crypto.Hash.Types (Context,
hashDigestSize,
hashInternalContextSize,
hashInternalFinalize,
hashInternalInit,
hashInternalUpdate)
import Crypto.Internal.Compat (unsafeDoIO)
import Data.Bits
import qualified Data.ByteArray as B
import Data.Foldable (forM_)
import Data.Memory.PtrMethods (memCopy, memSet, memXor)
import Data.Word
import Foreign.Ptr (Ptr, castPtr)
import Foreign.Storable (peekByteOff, pokeByteOff)
data Parameters = Parameters
{ iterCounts :: Int -- ^ The number of user-defined iterations for the algorithm
-- (must be > 0)
, outputLength :: Int -- ^ The number of bytes to generate out of BCryptPBKDF
-- (must be in 1..1024)
} deriving (Eq, Ord, Show)
-- | Derive a key of specified length using the bcrypt_pbkdf algorithm.
generate :: (B.ByteArray pass, B.ByteArray salt, B.ByteArray output)
=> Parameters
-> pass
-> salt
-> output
generate params pass salt
| iterCounts params < 1 = error "BCryptPBKDF: iterCounts must be > 0"
| keyLen < 1 || keyLen > 1024 = error "BCryptPBKDF: outputLength must be in 1..1024"
| otherwise = B.unsafeCreate keyLen deriveKey
where
outLen, tmpLen, blkLen, keyLen, passLen, saltLen, ctxLen, hashLen, blocks :: Int
outLen = 32
tmpLen = 32
blkLen = 4
passLen = B.length pass
saltLen = B.length salt
keyLen = outputLength params
ctxLen = hashInternalContextSize SHA512
hashLen = hashDigestSize SHA512 -- 64
blocks = (keyLen + outLen - 1) `div` outLen
deriveKey :: Ptr Word8 -> IO ()
deriveKey keyPtr = do
-- Allocate all necessary memory. The algorihm shall not allocate
-- any more dynamic memory after this point. Blocks need to be pinned
-- as pointers to them are passed to the SHA512 implementation.
ksClean <- Blowfish.createKeySchedule
ksDirty <- Blowfish.createKeySchedule
ctxMBlock <- Block.newPinned (CountOf ctxLen :: CountOf Word8)
outMBlock <- Block.newPinned (CountOf outLen :: CountOf Word8)
tmpMBlock <- Block.newPinned (CountOf tmpLen :: CountOf Word8)
blkMBlock <- Block.newPinned (CountOf blkLen :: CountOf Word8)
passHashMBlock <- Block.newPinned (CountOf hashLen :: CountOf Word8)
saltHashMBlock <- Block.newPinned (CountOf hashLen :: CountOf Word8)
-- Finally erase all memory areas that contain information from
-- which the derived key could be reconstructed.
-- As all MutableBlocks are pinned it shall be guaranteed that
-- no temporary trampoline buffers are allocated.
finallyErase outMBlock $ finallyErase passHashMBlock $
B.withByteArray pass $ \passPtr->
B.withByteArray salt $ \saltPtr->
Block.withMutablePtr ctxMBlock $ \ctxPtr->
Block.withMutablePtr outMBlock $ \outPtr->
Block.withMutablePtr tmpMBlock $ \tmpPtr->
Block.withMutablePtr blkMBlock $ \blkPtr->
Block.withMutablePtr passHashMBlock $ \passHashPtr->
Block.withMutablePtr saltHashMBlock $ \saltHashPtr-> do
-- Hash the password.
let shaPtr = castPtr ctxPtr :: Ptr (Context SHA512)
hashInternalInit shaPtr
hashInternalUpdate shaPtr passPtr (fromIntegral passLen)
hashInternalFinalize shaPtr (castPtr passHashPtr)
passHashBlock <- Block.unsafeFreeze passHashMBlock
forM_ [1..blocks] $ \block-> do
-- Poke the increased block counter.
Block.unsafeWrite blkMBlock 0 (fromIntegral $ block `shiftR` 24)
Block.unsafeWrite blkMBlock 1 (fromIntegral $ block `shiftR` 16)
Block.unsafeWrite blkMBlock 2 (fromIntegral $ block `shiftR` 8)
Block.unsafeWrite blkMBlock 3 (fromIntegral $ block `shiftR` 0)
-- First round (slightly different).
hashInternalInit shaPtr
hashInternalUpdate shaPtr saltPtr (fromIntegral saltLen)
hashInternalUpdate shaPtr blkPtr (fromIntegral blkLen)
hashInternalFinalize shaPtr (castPtr saltHashPtr)
Block.unsafeFreeze saltHashMBlock >>= \x-> do
Blowfish.copyKeySchedule ksDirty ksClean
hashInternalMutable ksDirty passHashBlock x tmpMBlock
memCopy outPtr tmpPtr outLen
-- Remaining rounds.
forM_ [2..iterCounts params] $ const $ do
hashInternalInit shaPtr
hashInternalUpdate shaPtr tmpPtr (fromIntegral tmpLen)
hashInternalFinalize shaPtr (castPtr saltHashPtr)
Block.unsafeFreeze saltHashMBlock >>= \x-> do
Blowfish.copyKeySchedule ksDirty ksClean
hashInternalMutable ksDirty passHashBlock x tmpMBlock
memXor outPtr outPtr tmpPtr outLen
-- Spread the current out buffer evenly over the key buffer.
-- After both loops have run every byte of the key buffer
-- will have been written to exactly once and every byte
-- of the output will have been used.
forM_ [0..outLen - 1] $ \outIdx-> do
let keyIdx = outIdx * blocks + block - 1
when (keyIdx < keyLen) $ do
w8 <- peekByteOff outPtr outIdx :: IO Word8
pokeByteOff keyPtr keyIdx w8
-- | Internal hash function used by `generate`.
--
-- Normal users should not need this.
hashInternal :: (B.ByteArrayAccess pass, B.ByteArrayAccess salt, B.ByteArray output)
=> pass
-> salt
-> output
hashInternal passHash saltHash
| B.length passHash /= 64 = error "passHash must be 512 bits"
| B.length saltHash /= 64 = error "saltHash must be 512 bits"
| otherwise = unsafeDoIO $ do
ks0 <- Blowfish.createKeySchedule
outMBlock <- Block.newPinned 32
hashInternalMutable ks0 passHash saltHash outMBlock
B.convert `fmap` Block.freeze outMBlock
hashInternalMutable :: (B.ByteArrayAccess pass, B.ByteArrayAccess salt)
=> Blowfish.KeySchedule
-> pass
-> salt
-> MutableBlock Word8 (PrimState IO)
-> IO ()
hashInternalMutable bfks passHash saltHash outMBlock = do
Blowfish.expandKeyWithSalt bfks passHash saltHash
forM_ [0..63 :: Int] $ const $ do
Blowfish.expandKey bfks saltHash
Blowfish.expandKey bfks passHash
-- "OxychromaticBlowfishSwatDynamite" represented as 4 Word64 in big-endian.
store 0 =<< cipher 64 0x4f78796368726f6d
store 8 =<< cipher 64 0x61746963426c6f77
store 16 =<< cipher 64 0x6669736853776174
store 24 =<< cipher 64 0x44796e616d697465
where
store :: Offset Word8 -> Word64 -> IO ()
store o w64 = do
Block.unsafeWrite outMBlock (o + 0) (fromIntegral $ w64 `shiftR` 32)
Block.unsafeWrite outMBlock (o + 1) (fromIntegral $ w64 `shiftR` 40)
Block.unsafeWrite outMBlock (o + 2) (fromIntegral $ w64 `shiftR` 48)
Block.unsafeWrite outMBlock (o + 3) (fromIntegral $ w64 `shiftR` 56)
Block.unsafeWrite outMBlock (o + 4) (fromIntegral $ w64 `shiftR` 0)
Block.unsafeWrite outMBlock (o + 5) (fromIntegral $ w64 `shiftR` 8)
Block.unsafeWrite outMBlock (o + 6) (fromIntegral $ w64 `shiftR` 16)
Block.unsafeWrite outMBlock (o + 7) (fromIntegral $ w64 `shiftR` 24)
cipher :: Int -> Word64 -> IO Word64
cipher 0 block = return block
cipher i block = Blowfish.cipherBlockMutable bfks block >>= cipher (i - 1)
finallyErase :: MutableBlock Word8 (PrimState IO) -> IO () -> IO ()
finallyErase mblock action =
action `finally` Block.withMutablePtr mblock (\ptr-> memSet ptr 0 len)
where
CountOf len = Block.mutableLengthBytes mblock

View File

@ -24,7 +24,7 @@ import Data.Word
import Data.Bits
import Foreign.Marshal.Alloc
import Foreign.Ptr (plusPtr, Ptr)
import Foreign.C.Types (CUInt(..), CSize(..))
import Foreign.C.Types (CUInt(..), CInt(..), CSize(..))
import Crypto.Hash (HashAlgorithm)
import qualified Crypto.MAC.HMAC as HMAC

View File

@ -94,7 +94,7 @@ bxor = B.xor
cipherIPT :: BlockCipher k => k -> [Word8]
cipherIPT = expandIPT . blockSize
cipherIPT = expandIPT . blockSize where
-- Data type which represents the smallest irreducibule binary polynomial
-- against specified degree.

View File

@ -12,7 +12,6 @@
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Crypto.MAC.HMAC
( hmac
, hmacLazy
, HMAC(..)
-- * Incremental
, Context(..)
@ -25,36 +24,28 @@ module Crypto.MAC.HMAC
import Crypto.Hash hiding (Context)
import qualified Crypto.Hash as Hash (Context)
import Crypto.Hash.IO
import Crypto.Internal.ByteArray (ScrubbedBytes, ByteArrayAccess)
import Crypto.Internal.ByteArray (ScrubbedBytes, ByteArray, ByteArrayAccess)
import qualified Crypto.Internal.ByteArray as B
import Data.Memory.PtrMethods
import Crypto.Internal.Compat
import qualified Data.ByteString.Lazy as L
import Crypto.Internal.Imports
-- | Represent an HMAC that is a phantom type with the hash used to produce the mac.
--
-- The Eq instance is constant time. No Show instance is provided, to avoid
-- printing by mistake.
-- The Eq instance is constant time.
newtype HMAC a = HMAC { hmacGetDigest :: Digest a }
deriving (ByteArrayAccess)
instance Eq (HMAC a) where
(HMAC b1) == (HMAC b2) = B.constEq b1 b2
-- | Compute a MAC using the supplied hashing function
-- | compute a MAC using the supplied hashing function
hmac :: (ByteArrayAccess key, ByteArrayAccess message, HashAlgorithm a)
=> key -- ^ Secret key
-> message -- ^ Message to MAC
-> HMAC a
hmac secret msg = finalize $ updates (initialize secret) [msg]
-- | Compute a MAC using the supplied hashing function, for a lazy input
hmacLazy :: (ByteArrayAccess key, HashAlgorithm a)
=> key -- ^ Secret key
-> L.ByteString -- ^ Message to MAC
-> HMAC a
hmacLazy secret msg = finalize $ updates (initialize secret) (L.toChunks msg)
-- | Represent an ongoing HMAC state, that can be appended with 'update'
-- and finalize to an HMAC with 'hmacFinalize'
data Context hashalg = Context !(Hash.Context hashalg) !(Hash.Context hashalg)

View File

@ -1,144 +0,0 @@
-- |
-- Module : Crypto.MAC.KMAC
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- Provide the KMAC (Keccak Message Authentication Code) algorithm, derived from
-- the SHA-3 base algorithm Keccak and defined in NIST SP800-185.
--
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Crypto.MAC.KMAC
( HashSHAKE
, kmac
, KMAC(..)
-- * Incremental
, Context
, initialize
, update
, updates
, finalize
) where
import qualified Crypto.Hash as H
import Crypto.Hash.SHAKE (HashSHAKE(..))
import Crypto.Hash.Types (HashAlgorithm(..), Digest(..))
import qualified Crypto.Hash.Types as H
import Crypto.Internal.Builder
import Crypto.Internal.Imports
import Foreign.Ptr (Ptr)
import Data.Bits (shiftR)
import Data.ByteArray (ByteArrayAccess)
import qualified Data.ByteArray as B
-- cSHAKE
cshakeInit :: forall a name string prefix . (HashSHAKE a, ByteArrayAccess name, ByteArrayAccess string, ByteArrayAccess prefix)
=> name -> string -> prefix -> H.Context a
cshakeInit n s p = H.Context $ B.allocAndFreeze c $ \(ptr :: Ptr (H.Context a)) -> do
hashInternalInit ptr
B.withByteArray b $ \d -> hashInternalUpdate ptr d (fromIntegral $ B.length b)
B.withByteArray p $ \d -> hashInternalUpdate ptr d (fromIntegral $ B.length p)
where
c = hashInternalContextSize (undefined :: a)
w = hashBlockSize (undefined :: a)
x = encodeString n <> encodeString s
b = buildAndFreeze (bytepad x w) :: B.Bytes
cshakeUpdate :: (HashSHAKE a, ByteArrayAccess ba)
=> H.Context a -> ba -> H.Context a
cshakeUpdate = H.hashUpdate
cshakeUpdates :: (HashSHAKE a, ByteArrayAccess ba)
=> H.Context a -> [ba] -> H.Context a
cshakeUpdates = H.hashUpdates
cshakeFinalize :: forall a suffix . (HashSHAKE a, ByteArrayAccess suffix)
=> H.Context a -> suffix -> Digest a
cshakeFinalize !c s =
Digest $ B.allocAndFreeze (hashDigestSize (undefined :: a)) $ \dig -> do
((!_) :: B.Bytes) <- B.copy c $ \(ctx :: Ptr (H.Context a)) -> do
B.withByteArray s $ \d ->
hashInternalUpdate ctx d (fromIntegral $ B.length s)
cshakeInternalFinalize ctx dig
return ()
-- KMAC
-- | Represent a KMAC that is a phantom type with the hash used to produce the
-- mac.
--
-- The Eq instance is constant time. No Show instance is provided, to avoid
-- printing by mistake.
newtype KMAC a = KMAC { kmacGetDigest :: Digest a }
deriving (ByteArrayAccess,NFData)
instance Eq (KMAC a) where
(KMAC b1) == (KMAC b2) = B.constEq b1 b2
-- | Compute a KMAC using the supplied customization string and key.
kmac :: (HashSHAKE a, ByteArrayAccess string, ByteArrayAccess key, ByteArrayAccess ba)
=> string -> key -> ba -> KMAC a
kmac str key msg = finalize $ updates (initialize str key) [msg]
-- | Represent an ongoing KMAC state, that can be appended with 'update' and
-- finalized to a 'KMAC' with 'finalize'.
newtype Context a = Context (H.Context a)
-- | Initialize a new incremental KMAC context with the supplied customization
-- string and key.
initialize :: forall a string key . (HashSHAKE a, ByteArrayAccess string, ByteArrayAccess key)
=> string -> key -> Context a
initialize str key = Context $ cshakeInit n str p
where
n = B.pack [75,77,65,67] :: B.Bytes -- "KMAC"
w = hashBlockSize (undefined :: a)
p = buildAndFreeze (bytepad (encodeString key) w) :: B.ScrubbedBytes
-- | Incrementally update a KMAC context.
update :: (HashSHAKE a, ByteArrayAccess ba) => Context a -> ba -> Context a
update (Context ctx) = Context . cshakeUpdate ctx
-- | Incrementally update a KMAC context with multiple inputs.
updates :: (HashSHAKE a, ByteArrayAccess ba) => Context a -> [ba] -> Context a
updates (Context ctx) = Context . cshakeUpdates ctx
-- | Finalize a KMAC context and return the KMAC.
finalize :: forall a . HashSHAKE a => Context a -> KMAC a
finalize (Context ctx) = KMAC $ cshakeFinalize ctx suffix
where
l = cshakeOutputLength (undefined :: a)
suffix = buildAndFreeze (rightEncode l) :: B.Bytes
-- Utilities
bytepad :: Builder -> Int -> Builder
bytepad x w = prefix <> x <> zero padLen
where
prefix = leftEncode w
padLen = (w - builderLength prefix - builderLength x) `mod` w
encodeString :: ByteArrayAccess bin => bin -> Builder
encodeString s = leftEncode (8 * B.length s) <> bytes s
leftEncode :: Int -> Builder
leftEncode x = byte len <> digits
where
digits = i2osp x
len = fromIntegral (builderLength digits)
rightEncode :: Int -> Builder
rightEncode x = digits <> byte len
where
digits = i2osp x
len = fromIntegral (builderLength digits)
i2osp :: Int -> Builder
i2osp i | i >= 256 = i2osp (shiftR i 8) <> byte (fromIntegral i)
| otherwise = byte (fromIntegral i)

View File

@ -33,11 +33,6 @@ import Crypto.Internal.DeepSeq
import Crypto.Error
-- | Poly1305 State
--
-- This type is an instance of 'ByteArrayAccess' for debugging purpose. Internal
-- layout is architecture dependent, may contain uninitialized data fragments,
-- and change in future versions. The bytearray should not be used as input to
-- cryptographic algorithms.
newtype State = State ScrubbedBytes
deriving (ByteArrayAccess)

View File

@ -13,11 +13,8 @@ module Crypto.Number.Basic
, log2
, numBits
, numBytes
, asPowerOf2AndOdd
) where
import Data.Bits
import Crypto.Number.Compat
-- | @sqrti@ returns two integers @(l,b)@ so that @l <= sqrt i <= b@.
@ -101,16 +98,3 @@ numBits n = gmpSizeInBits n `onGmpUnsupported` (if n == 0 then 1 else computeBit
-- | Compute the number of bytes for an integer
numBytes :: Integer -> Int
numBytes n = gmpSizeInBytes n `onGmpUnsupported` ((numBits n + 7) `div` 8)
-- | Express an integer as an odd number and a power of 2
asPowerOf2AndOdd :: Integer -> (Int, Integer)
asPowerOf2AndOdd a
| a == 0 = (0, 0)
| odd a = (0, a)
| a < 0 = let (e, a1) = asPowerOf2AndOdd $ abs a in (e, -a1)
| isPowerOf2 a = (log2 a, 1)
| otherwise = loop a 0
where
isPowerOf2 n = (n /= 0) && ((n .&. (n - 1)) == 0)
loop n pw = if n `mod` 2 == 0 then loop (n `div` 2) (pw + 1)
else (pw, n)

View File

@ -22,9 +22,7 @@ module Crypto.Number.Compat
, gmpSizeInBytes
, gmpSizeInBits
, gmpExportInteger
, gmpExportIntegerLE
, gmpImportInteger
, gmpImportIntegerLE
) where
#ifndef MIN_VERSION_integer_gmp
@ -72,11 +70,7 @@ gmpLog2 _ = GmpUnsupported
-- | Compute the power modulus using extra security to remain constant
-- time wise through GMP
gmpPowModSecInteger :: Integer -> Integer -> Integer -> GmpSupported Integer
#if MIN_VERSION_integer_gmp(1,1,0)
gmpPowModSecInteger _ _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(1,0,2)
gmpPowModSecInteger b e m = GmpSupported (powModSecInteger b e m)
#elif MIN_VERSION_integer_gmp(1,0,0)
#if MIN_VERSION_integer_gmp(1,0,0)
gmpPowModSecInteger _ _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpPowModSecInteger b e m = GmpSupported (powModSecInteger b e m)
@ -105,9 +99,7 @@ gmpInverse _ _ = GmpUnsupported
-- | Get the next prime from a specific value through GMP
gmpNextPrime :: Integer -> GmpSupported Integer
#if MIN_VERSION_integer_gmp(1,1,0)
gmpNextPrime _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
#if MIN_VERSION_integer_gmp(0,5,1)
gmpNextPrime n = GmpSupported (nextPrimeInteger n)
#else
gmpNextPrime _ = GmpUnsupported
@ -115,9 +107,7 @@ gmpNextPrime _ = GmpUnsupported
-- | Test if a number is prime using Miller Rabin
gmpTestPrimeMillerRabin :: Int -> Integer -> GmpSupported Bool
#if MIN_VERSION_integer_gmp(1,1,0)
gmpTestPrimeMillerRabin _ _ = GmpUnsupported
#elif MIN_VERSION_integer_gmp(0,5,1)
#if MIN_VERSION_integer_gmp(0,5,1)
gmpTestPrimeMillerRabin (I# tries) !n = GmpSupported $
case testPrimeInteger n tries of
0# -> False
@ -142,7 +132,7 @@ gmpSizeInBits n = GmpSupported (I# (word2Int# (sizeInBaseInteger n 2#)))
gmpSizeInBits _ = GmpUnsupported
#endif
-- | Export an integer to a memory (big-endian)
-- | Export an integer to a memory
gmpExportInteger :: Integer -> Ptr Word8 -> GmpSupported (IO ())
#if MIN_VERSION_integer_gmp(1,0,0)
gmpExportInteger n (Ptr addr) = GmpSupported $ do
@ -156,21 +146,7 @@ gmpExportInteger n (Ptr addr) = GmpSupported $ IO $ \s ->
gmpExportInteger _ _ = GmpUnsupported
#endif
-- | Export an integer to a memory (little-endian)
gmpExportIntegerLE :: Integer -> Ptr Word8 -> GmpSupported (IO ())
#if MIN_VERSION_integer_gmp(1,0,0)
gmpExportIntegerLE n (Ptr addr) = GmpSupported $ do
_ <- exportIntegerToAddr n addr 0#
return ()
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpExportIntegerLE n (Ptr addr) = GmpSupported $ IO $ \s ->
case exportIntegerToAddr n addr 0# s of
(# s2, _ #) -> (# s2, () #)
#else
gmpExportIntegerLE _ _ = GmpUnsupported
#endif
-- | Import an integer from a memory (big-endian)
-- | Import an integer from a memory
gmpImportInteger :: Int -> Ptr Word8 -> GmpSupported (IO Integer)
#if MIN_VERSION_integer_gmp(1,0,0)
gmpImportInteger (I# n) (Ptr addr) = GmpSupported $
@ -181,15 +157,3 @@ gmpImportInteger (I# n) (Ptr addr) = GmpSupported $ IO $ \s ->
#else
gmpImportInteger _ _ = GmpUnsupported
#endif
-- | Import an integer from a memory (little-endian)
gmpImportIntegerLE :: Int -> Ptr Word8 -> GmpSupported (IO Integer)
#if MIN_VERSION_integer_gmp(1,0,0)
gmpImportIntegerLE (I# n) (Ptr addr) = GmpSupported $
importIntegerFromAddr addr (int2Word# n) 0#
#elif MIN_VERSION_integer_gmp(0,5,1)
gmpImportIntegerLE (I# n) (Ptr addr) = GmpSupported $ IO $ \s ->
importIntegerFromAddr addr (int2Word# n) 0# s
#else
gmpImportIntegerLE _ _ = GmpUnsupported
#endif

View File

@ -16,15 +16,14 @@ module Crypto.Number.F2m
, mulF2m
, squareF2m'
, squareF2m
, powF2m
, modF2m
, sqrtF2m
, invF2m
, divF2m
) where
import Data.Bits (xor, shift, testBit, setBit)
import Data.List
import Crypto.Internal.Imports
import Crypto.Number.Basic
-- | Binary Polynomial represented by an integer
@ -68,8 +67,8 @@ mulF2m :: BinaryPolynomial -- ^ Modulus
mulF2m fx n1 n2
| fx < 0
|| n1 < 0
|| n2 < 0 = error "mulF2m: negative number represent no binary polynomial"
| fx == 0 = error "mulF2m: cannot multiply modulo zero polynomial"
|| n2 < 0 = error "mulF2m: negative number represent no binary binary polynomial"
| fx == 0 = error "modF2m: cannot multiply modulo zero polynomial"
| otherwise = modF2m fx $ go (if n2 `mod` 2 == 1 then n1 else 0) (log2 n2)
where
go n s | s == 0 = n
@ -98,37 +97,10 @@ squareF2m fx = modF2m fx . squareF2m'
squareF2m' :: Integer
-> Integer
squareF2m' n
| n < 0 = error "mulF2m: negative number represent no binary polynomial"
| n < 0 = error "mulF2m: negative number represent no binary binary polynomial"
| otherwise = foldl' (\acc s -> if testBit n s then setBit acc (2 * s) else acc) 0 [0 .. log2 n]
{-# INLINE squareF2m' #-}
-- | Exponentiation in F₂m by computing @a^b mod fx@.
--
-- This implements an exponentiation by squaring based solution. It inherits the
-- same restrictions as 'squareF2m'. Negative exponents are disallowed.
powF2m :: BinaryPolynomial -- ^Modulus
-> Integer -- ^a
-> Integer -- ^b
-> Integer
powF2m fx a b
| b < 0 = error "powF2m: negative exponents disallowed"
| b == 0 = if fx > 1 then 1 else 0
| even b = squareF2m fx x
| otherwise = mulF2m fx a (squareF2m' x)
where x = powF2m fx a (b `div` 2)
-- | Square rooot in F₂m.
--
-- We exploit the fact that @a^(2^m) = a@, or in particular, @a^(2^m - 1) = 1@
-- from a classical result by Lagrange. Thus the square root is simply @a^(2^(m
-- - 1))@.
sqrtF2m :: BinaryPolynomial -- ^Modulus
-> Integer -- ^a
-> Integer
sqrtF2m fx a = go (log2 fx - 1) a
where go 0 x = x
go n x = go (n - 1) (squareF2m fx x)
-- | Extended GCD algorithm for polynomials. For @a@ and @b@ returns @(g, u, v)@ such that @a * u + b * v == g@.
--
-- Reference: https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#B.C3.A9zout.27s_identity_and_extended_GCD_algorithm

View File

@ -1,4 +1,5 @@
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
-- |
-- Module : Crypto.Number.ModArithmetic
-- License : BSD-style
@ -14,23 +15,20 @@ module Crypto.Number.ModArithmetic
-- * Inverse computing
, inverse
, inverseCoprimes
, inverseFermat
-- * Squares
, jacobi
, squareRoot
) where
import Control.Exception (throw, Exception)
import Data.Typeable
import Crypto.Number.Basic
import Crypto.Number.Compat
-- | Raised when two numbers are supposed to be coprimes but are not.
data CoprimesAssertionError = CoprimesAssertionError
deriving (Show)
deriving (Show,Typeable)
instance Exception CoprimesAssertionError
-- | Compute the modular exponentiation of base^exponent using
-- | Compute the modular exponentiation of base^exponant using
-- algorithms design to avoid side channels and timing measurement
--
-- Modulo need to be odd otherwise the normal fast modular exponentiation
@ -40,10 +38,11 @@ instance Exception CoprimesAssertionError
-- from expFast, and thus provide the same unstudied and dubious
-- timing and side channels claims.
--
-- Before GHC 8.4.2, powModSecInteger is missing from integer-gmp,
-- so expSafe has the same security as expFast.
-- with GHC 7.10, the powModSecInteger is missing from integer-gmp
-- (which is now integer-gmp2), so is has the same security as old
-- ghc version.
expSafe :: Integer -- ^ base
-> Integer -- ^ exponent
-> Integer -- ^ exponant
-> Integer -- ^ modulo
-> Integer -- ^ result
expSafe b e m
@ -53,14 +52,14 @@ expSafe b e m
| otherwise = gmpPowModInteger b e m `onGmpUnsupported`
exponentiation b e m
-- | Compute the modular exponentiation of base^exponent using
-- | Compute the modular exponentiation of base^exponant using
-- the fastest algorithm without any consideration for
-- hiding parameters.
--
-- Use this function when all the parameters are public,
-- otherwise 'expSafe' should be preferred.
-- otherwise 'expSafe' should be prefered.
expFast :: Integer -- ^ base
-> Integer -- ^ exponent
-> Integer -- ^ exponant
-> Integer -- ^ modulo
-> Integer -- ^ result
expFast b e m = gmpPowModInteger b e m `onGmpUnsupported` exponentiation b e m
@ -72,7 +71,7 @@ exponentiation b e m
| b == 1 = b
| e == 0 = 1
| e == 1 = b `mod` m
| even e = let p = exponentiation b (e `div` 2) m `mod` m
| even e = let p = (exponentiation b (e `div` 2) m) `mod` m
in (p^(2::Integer)) `mod` m
| otherwise = (b * exponentiation b (e-1) m) `mod` m
@ -96,122 +95,3 @@ inverseCoprimes g m =
case inverse g m of
Nothing -> throw CoprimesAssertionError
Just i -> i
-- | Computes the Jacobi symbol (a/n).
-- 0 ≤ a < n; n ≥ 3 and odd.
--
-- The Legendre and Jacobi symbols are indistinguishable exactly when the
-- lower argument is an odd prime, in which case they have the same value.
--
-- See algorithm 2.149 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
jacobi :: Integer -> Integer -> Maybe Integer
jacobi a n
| n < 3 || even n = Nothing
| a == 0 || a == 1 = Just a
| n <= a = jacobi (a `mod` n) n
| a < 0 =
let b = if n `mod` 4 == 1 then 1 else -1
in fmap (*b) (jacobi (-a) n)
| otherwise =
let (e, a1) = asPowerOf2AndOdd a
nMod8 = n `mod` 8
nMod4 = n `mod` 4
a1Mod4 = a1 `mod` 4
s' = if even e || nMod8 == 1 || nMod8 == 7 then 1 else -1
s = if nMod4 == 3 && a1Mod4 == 3 then -s' else s'
n1 = n `mod` a1
in if a1 == 1 then Just s
else fmap (*s) (jacobi n1 a1)
-- | Modular inverse using Fermat's little theorem. This works only when
-- the modulus is prime but avoids side channels like in 'expSafe'.
inverseFermat :: Integer -> Integer -> Integer
inverseFermat g p = expSafe g (p - 2) p
-- | Raised when the assumption about the modulus is invalid.
data ModulusAssertionError = ModulusAssertionError
deriving (Show)
instance Exception ModulusAssertionError
-- | Modular square root of @g@ modulo a prime @p@.
--
-- If the modulus is found not to be prime, the function will raise a
-- 'ModulusAssertionError'.
--
-- This implementation is variable time and should be used with public
-- parameters only.
squareRoot :: Integer -> Integer -> Maybe Integer
squareRoot p
| p < 2 = throw ModulusAssertionError
| otherwise =
case p `divMod` 8 of
(v, 3) -> method1 (2 * v + 1)
(v, 7) -> method1 (2 * v + 2)
(u, 5) -> method2 u
(_, 1) -> tonelliShanks p
(0, 2) -> \a -> Just (if even a then 0 else 1)
_ -> throw ModulusAssertionError
where
x `eqMod` y = (x - y) `mod` p == 0
validate g y | (y * y) `eqMod` g = Just y
| otherwise = Nothing
-- p == 4u + 3 and u' == u + 1
method1 u' g =
let y = expFast g u' p
in validate g y
-- p == 8u + 5
method2 u g =
let gamma = expFast (2 * g) u p
g_gamma = g * gamma
i = (2 * g_gamma * gamma) `mod` p
y = (g_gamma * (i - 1)) `mod` p
in validate g y
tonelliShanks :: Integer -> Integer -> Maybe Integer
tonelliShanks p a
| aa == 0 = Just 0
| otherwise =
case expFast aa p2 p of
b | b == p1 -> Nothing
| b == 1 -> Just $ go (expFast aa ((s + 1) `div` 2) p)
(expFast aa s p)
(expFast n s p)
e
| otherwise -> throw ModulusAssertionError
where
aa = a `mod` p
p1 = p - 1
p2 = p1 `div` 2
n = findN 2
x `mul` y = (x * y) `mod` p
pow2m 0 x = x
pow2m i x = pow2m (i - 1) (x `mul` x)
(e, s) = asPowerOf2AndOdd p1
-- find a quadratic non-residue
findN i
| expFast i p2 p == p1 = i
| otherwise = findN (i + 1)
-- find m such that b^(2^m) == 1 (mod p)
findM b i
| b == 1 = i
| otherwise = findM (b `mul` b) (i + 1)
go !x b g !r
| b == 1 = x
| otherwise =
let r' = findM b 0
z = pow2m (r - r' - 1) g
x' = x `mul` z
b' = b `mul` g'
g' = z `mul` z
in go x' b' g' r'

View File

@ -1,63 +0,0 @@
-- |
-- Module : Crypto.Number.Nat
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
-- Numbers at type level.
--
-- This module provides extensions to "GHC.TypeLits" and "GHC.TypeNats" useful
-- to work with cryptographic algorithms parameterized with a variable bit
-- length. Constraints like @'IsDivisibleBy8' n@ ensure that the type-level
-- parameter is applicable to the algorithm.
--
-- Functions are also provided to test whether constraints are satisfied from
-- values known at runtime. The following example shows how to discharge
-- 'IsDivisibleBy8' in a computation @fn@ requiring this constraint:
--
-- > withDivisibleBy8 :: Integer
-- > -> (forall proxy n . (KnownNat n, IsDivisibleBy8 n) => proxy n -> a)
-- > -> Maybe a
-- > withDivisibleBy8 len fn = do
-- > SomeNat p <- someNatVal len
-- > Refl <- isDivisibleBy8 p
-- > pure (fn p)
--
-- Function @withDivisibleBy8@ above returns 'Nothing' when the argument @len@
-- is negative or not divisible by 8.
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
module Crypto.Number.Nat
( type IsDivisibleBy8
, type IsAtMost, type IsAtLeast
, isDivisibleBy8
, isAtMost
, isAtLeast
) where
import Data.Type.Equality
import GHC.TypeLits
import Unsafe.Coerce (unsafeCoerce)
import Crypto.Internal.Nat
-- | get a runtime proof that the constraint @'IsDivisibleBy8' n@ is satified
isDivisibleBy8 :: KnownNat n => proxy n -> Maybe (IsDiv8 n n :~: 'True)
isDivisibleBy8 n
| mod (natVal n) 8 == 0 = Just (unsafeCoerce Refl)
| otherwise = Nothing
-- | get a runtime proof that the constraint @'IsAtMost' value bound@ is
-- satified
isAtMost :: (KnownNat value, KnownNat bound)
=> proxy value -> proxy' bound -> Maybe ((value <=? bound) :~: 'True)
isAtMost x y
| natVal x <= natVal y = Just (unsafeCoerce Refl)
| otherwise = Nothing
-- | get a runtime proof that the constraint @'IsAtLeast' value bound@ is
-- satified
isAtLeast :: (KnownNat value, KnownNat bound)
=> proxy value -> proxy' bound -> Maybe ((bound <=? value) :~: 'True)
isAtLeast = flip isAtMost

View File

@ -19,6 +19,8 @@ module Crypto.Number.Prime
, isCoprime
) where
import Crypto.Internal.Imports
import Crypto.Number.Compat
import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde)
@ -127,7 +129,7 @@ primalityTestMillerRabin tries !n =
factorise :: Integer -> Integer -> (Integer, Integer)
factorise !si !vi
| vi `testBit` 0 = (si, vi)
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continuously, but just once.
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continously, but just once.
expmod = expSafe
-- when iteration reach zero, we have a probable prime

View File

@ -35,7 +35,6 @@ i2osp m = B.allocAndFreeze sz (\p -> Internal.i2osp m p sz >> return ())
-- | Just like 'i2osp', but takes an extra parameter for size.
-- If the number is too big to fit in @len@ bytes, 'Nothing' is returned
-- otherwise the number is padded with 0 to fit the @len@ required.
{-# INLINABLE i2ospOf #-}
i2ospOf :: B.ByteArray ba => Int -> Integer -> Maybe ba
i2ospOf len m
| len <= 0 = Nothing

View File

@ -23,7 +23,7 @@ import Foreign.Storable
-- | Fill a pointer with the big endian binary representation of an integer
--
-- If the room available @ptrSz@ is less than the number of bytes needed,
-- If the room available @ptrSz is less than the number of bytes needed,
-- 0 is returned. Likewise if a parameter is invalid, 0 is returned.
--
-- Returns the number of bytes written
@ -69,7 +69,7 @@ os2ip ptr ptrSz
| otherwise = gmpImportInteger ptrSz ptr `onGmpUnsupported` loop 0 0 ptr
where
loop :: Integer -> Int -> Ptr Word8 -> IO Integer
loop !acc i !p
loop !acc i p
| i == ptrSz = return acc
| otherwise = do
w <- peekByteOff p i :: IO Word8

View File

@ -1,75 +0,0 @@
-- |
-- Module : Crypto.Number.Serialize.Internal.LE
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
-- Fast serialization primitives for integer using raw pointers (little endian)
{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Serialize.Internal.LE
( i2osp
, i2ospOf
, os2ip
) where
import Crypto.Number.Compat
import Crypto.Number.Basic
import Data.Bits
import Data.Memory.PtrMethods
import Data.Word (Word8)
import Foreign.Ptr
import Foreign.Storable
-- | Fill a pointer with the little endian binary representation of an integer
--
-- If the room available @ptrSz@ is less than the number of bytes needed,
-- 0 is returned. Likewise if a parameter is invalid, 0 is returned.
--
-- Returns the number of bytes written
i2osp :: Integer -> Ptr Word8 -> Int -> IO Int
i2osp m ptr ptrSz
| ptrSz <= 0 = return 0
| m < 0 = return 0
| m == 0 = pokeByteOff ptr 0 (0 :: Word8) >> return 1
| ptrSz < sz = return 0
| otherwise = fillPtr ptr sz m >> return sz
where
!sz = numBytes m
-- | Similar to 'i2osp', except it will pad any remaining space with zero.
i2ospOf :: Integer -> Ptr Word8 -> Int -> IO Int
i2ospOf m ptr ptrSz
| ptrSz <= 0 = return 0
| m < 0 = return 0
| ptrSz < sz = return 0
| otherwise = do
memSet ptr 0 ptrSz
fillPtr ptr sz m
return ptrSz
where
!sz = numBytes m
fillPtr :: Ptr Word8 -> Int -> Integer -> IO ()
fillPtr p sz m = gmpExportIntegerLE m p `onGmpUnsupported` export 0 m
where
export ofs i
| ofs >= sz = return ()
| otherwise = do
let (i', b) = i `divMod` 256
pokeByteOff p ofs (fromIntegral b :: Word8)
export (ofs+1) i'
-- | Transform a little endian binary integer representation pointed by a
-- pointer and a size into an integer
os2ip :: Ptr Word8 -> Int -> IO Integer
os2ip ptr ptrSz
| ptrSz <= 0 = return 0
| otherwise = gmpImportIntegerLE ptrSz ptr `onGmpUnsupported` loop 0 (ptrSz-1) ptr
where
loop :: Integer -> Int -> Ptr Word8 -> IO Integer
loop !acc i !p
| i < 0 = return acc
| otherwise = do
w <- peekByteOff p i :: IO Word8
loop ((acc `shiftL` 8) .|. fromIntegral w) (i-1) p

View File

@ -1,54 +0,0 @@
-- |
-- Module : Crypto.Number.Serialize.LE
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
-- Fast serialization primitives for integer (little endian)
{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Serialize.LE
( i2osp
, os2ip
, i2ospOf
, i2ospOf_
) where
import Crypto.Number.Basic
import Crypto.Internal.Compat (unsafeDoIO)
import qualified Crypto.Internal.ByteArray as B
import qualified Crypto.Number.Serialize.Internal.LE as Internal
-- | @os2ip@ converts a byte string into a positive integer.
os2ip :: B.ByteArrayAccess ba => ba -> Integer
os2ip bs = unsafeDoIO $ B.withByteArray bs (\p -> Internal.os2ip p (B.length bs))
-- | @i2osp@ converts a positive integer into a byte string.
--
-- The first byte is LSB (least significant byte); the last byte is the MSB (most significant byte)
i2osp :: B.ByteArray ba => Integer -> ba
i2osp 0 = B.allocAndFreeze 1 (\p -> Internal.i2osp 0 p 1 >> return ())
i2osp m = B.allocAndFreeze sz (\p -> Internal.i2osp m p sz >> return ())
where
!sz = numBytes m
-- | Just like 'i2osp', but takes an extra parameter for size.
-- If the number is too big to fit in @len@ bytes, 'Nothing' is returned
-- otherwise the number is padded with 0 to fit the @len@ required.
{-# INLINABLE i2ospOf #-}
i2ospOf :: B.ByteArray ba => Int -> Integer -> Maybe ba
i2ospOf len m
| len <= 0 = Nothing
| m < 0 = Nothing
| sz > len = Nothing
| otherwise = Just $ B.unsafeCreate len (\p -> Internal.i2ospOf m p len >> return ())
where
!sz = numBytes m
-- | Just like 'i2ospOf' except that it doesn't expect a failure: i.e.
-- an integer larger than the number of output bytes requested.
--
-- For example if you just took a modulo of the number that represent
-- the size (example the RSA modulo n).
i2ospOf_ :: B.ByteArray ba => Int -> Integer -> ba
i2ospOf_ len = maybe (error "i2ospOf_: integer is larger than expected") id . i2ospOf len

View File

@ -42,14 +42,15 @@ module Crypto.OTP
)
where
import Data.Bits (shiftL, (.&.), (.|.))
import Data.Bits (shiftL, shiftR, (.&.), (.|.))
import Data.ByteArray.Mapping (fromW64BE)
import Data.List (elemIndex)
import Data.Word
import Foreign.Storable (poke)
import Control.Monad (unless)
import Crypto.Hash (HashAlgorithm, SHA1(..))
import Crypto.MAC.HMAC
import Crypto.Internal.ByteArray (ByteArrayAccess, Bytes)
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Crypto.Internal.ByteArray as B

View File

@ -33,8 +33,9 @@ import GHC.Ptr
import Crypto.Error
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArrayAccess, ScrubbedBytes, Bytes, withByteArray)
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, ScrubbedBytes, Bytes, withByteArray)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Error (CryptoFailable(..))
import Crypto.Random
-- | A Curve25519 Secret key

View File

@ -12,6 +12,7 @@
-- data types are compatible with the encoding specified in RFC 7748.
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
module Crypto.PubKey.Curve448
( SecretKey
, PublicKey
@ -28,6 +29,7 @@ module Crypto.PubKey.Curve448
import Data.Word
import Foreign.Ptr
import GHC.Ptr
import Crypto.Error
import Crypto.Random

View File

@ -33,7 +33,7 @@ data Params = Params
{ params_p :: Integer
, params_g :: Integer
, params_bits :: Int
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData Params where
rnf (Params p g bits) = rnf p `seq` rnf g `seq` bits `seq` ()

View File

@ -28,17 +28,18 @@ module Crypto.PubKey.DSA
, toPrivateKey
) where
import Data.Data
import Data.Maybe
import Crypto.Number.ModArithmetic (expFast, expSafe, inverse)
import Crypto.Number.Generate
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Crypto.Internal.Imports
import Crypto.Hash
import Crypto.PubKey.Internal (dsaTruncHash)
import Crypto.Random.Types
import Crypto.Random.Types
import Data.Bits (testBit)
import Data.Data
import Data.Maybe
import Crypto.Number.Basic (numBits)
import Crypto.Number.ModArithmetic (expFast, expSafe, inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.Internal.ByteArray (ByteArrayAccess(length), convert, index, dropView, takeView)
import Crypto.Internal.Imports
import Crypto.Hash
import Prelude hiding (length)
-- | DSA Public Number, usually embedded in DSA Public Key
type PublicNumber = Integer
@ -51,7 +52,7 @@ data Params = Params
{ params_p :: Integer -- ^ DSA p
, params_g :: Integer -- ^ DSA g
, params_q :: Integer -- ^ DSA q
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData Params where
rnf (Params p g q) = p `seq` g `seq` q `seq` ()
@ -60,7 +61,7 @@ instance NFData Params where
data Signature = Signature
{ sign_r :: Integer -- ^ DSA r
, sign_s :: Integer -- ^ DSA s
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData Signature where
rnf (Signature r s) = r `seq` s `seq` ()
@ -69,7 +70,7 @@ instance NFData Signature where
data PublicKey = PublicKey
{ public_params :: Params -- ^ DSA parameters
, public_y :: PublicNumber -- ^ DSA public Y
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PublicKey where
rnf (PublicKey params y) = y `seq` params `seq` ()
@ -81,14 +82,14 @@ instance NFData PublicKey where
data PrivateKey = PrivateKey
{ private_params :: Params -- ^ DSA parameters
, private_x :: PrivateNumber -- ^ DSA private X
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PrivateKey where
rnf (PrivateKey params x) = x `seq` params `seq` ()
-- | Represent a DSA key pair
data KeyPair = KeyPair Params PublicNumber PrivateNumber
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
instance NFData KeyPair where
rnf (KeyPair params y x) = x `seq` y `seq` params `seq` ()
@ -125,7 +126,7 @@ signWith k pk hashAlg msg
x = private_x pk
-- compute r,s
kInv = fromJust $ inverse k q
hm = dsaTruncHash hashAlg msg q
hm = os2ip $ hashWith hashAlg msg
r = expSafe g k p `mod` q
s = (kInv * (hm + x * r)) `mod` q
@ -147,8 +148,11 @@ verify hashAlg pk (Signature r s) m
| otherwise = v == r
where (Params p g q) = public_params pk
y = public_y pk
hm = dsaTruncHash hashAlg m q
hm = os2ip . truncateHash $ hashWith hashAlg m
w = fromJust $ inverse s q
u1 = (hm*w) `mod` q
u2 = (r*w) `mod` q
v = ((expFast g u1 p) * (expFast y u2 p)) `mod` p `mod` q
-- if the hash is larger than the size of q, truncate it; FIXME: deal with the case of a q not evenly divisible by 8
truncateHash h = if numBits (os2ip h) > numBits q then takeView h (numBits q `div` 8) else dropView h 0

View File

@ -11,46 +11,45 @@ module Crypto.PubKey.ECC.ECDSA
, toPublicKey
, toPrivateKey
, signWith
, signDigestWith
, sign
, signDigest
, verify
, verifyDigest
) where
import Control.Monad
import Data.Data
import Crypto.Hash
import Crypto.Random.Types
import Data.Bits (shiftR)
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Data.Data
import Crypto.Number.Basic (numBits)
import Crypto.Number.ModArithmetic (inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.PubKey.ECC.Types
import Crypto.PubKey.ECC.Prim
import Crypto.PubKey.Internal (dsaTruncHashDigest)
import Crypto.Random.Types
import Crypto.Hash
import Crypto.Hash.Types (hashDigestSize)
-- | Represent a ECDSA signature namely R and S.
data Signature = Signature
{ sign_r :: Integer -- ^ ECDSA r
, sign_s :: Integer -- ^ ECDSA s
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Private Key.
data PrivateKey = PrivateKey
{ private_curve :: Curve
, private_d :: PrivateNumber
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Public Key.
data PublicKey = PublicKey
{ public_curve :: Curve
, public_q :: PublicPoint
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Key Pair.
data KeyPair = KeyPair Curve PublicPoint PrivateNumber
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
-- | Public key of a ECDSA Key pair.
toPublicKey :: KeyPair -> PublicKey
@ -60,26 +59,6 @@ toPublicKey (KeyPair curve pub _) = PublicKey curve pub
toPrivateKey :: KeyPair -> PrivateKey
toPrivateKey (KeyPair curve _ priv) = PrivateKey curve priv
-- | Sign digest using the private key and an explicit k number.
--
-- /WARNING:/ Vulnerable to timing attacks.
signDigestWith :: HashAlgorithm hash
=> Integer -- ^ k random number
-> PrivateKey -- ^ private key
-> Digest hash -- ^ digest to sign
-> Maybe Signature
signDigestWith k (PrivateKey curve d) digest = do
let z = dsaTruncHashDigest digest n
CurveCommon _ _ g n _ = common_curve curve
let point = pointMul curve k g
r <- case point of
PointO -> Nothing
Point x _ -> return $ x `mod` n
kInv <- inverse k n
let s = kInv * (z + r * d) `mod` n
when (r == 0 || s == 0) Nothing
return $ Signature r s
-- | Sign message using the private key and an explicit k number.
--
-- /WARNING:/ Vulnerable to timing attacks.
@ -89,35 +68,38 @@ signWith :: (ByteArrayAccess msg, HashAlgorithm hash)
-> hash -- ^ hash function
-> msg -- ^ message to sign
-> Maybe Signature
signWith k pk hashAlg msg = signDigestWith k pk (hashWith hashAlg msg)
-- | Sign digest using the private key.
--
-- /WARNING:/ Vulnerable to timing attacks.
signDigest :: (HashAlgorithm hash, MonadRandom m)
=> PrivateKey -> Digest hash -> m Signature
signDigest pk digest = do
k <- generateBetween 1 (n - 1)
case signDigestWith k pk digest of
Nothing -> signDigest pk digest
Just sig -> return sig
where n = ecc_n . common_curve $ private_curve pk
signWith k (PrivateKey curve d) hashAlg msg = do
let z = tHash hashAlg msg n
CurveCommon _ _ g n _ = common_curve curve
let point = pointMul curve k g
r <- case point of
PointO -> Nothing
Point x _ -> return $ x `mod` n
kInv <- inverse k n
let s = kInv * (z + r * d) `mod` n
when (r == 0 || s == 0) Nothing
return $ Signature r s
-- | Sign message using the private key.
--
-- /WARNING:/ Vulnerable to timing attacks.
sign :: (ByteArrayAccess msg, HashAlgorithm hash, MonadRandom m)
=> PrivateKey -> hash -> msg -> m Signature
sign pk hashAlg msg = signDigest pk (hashWith hashAlg msg)
sign pk hashAlg msg = do
k <- generateBetween 1 (n - 1)
case signWith k pk hashAlg msg of
Nothing -> sign pk hashAlg msg
Just sig -> return sig
where n = ecc_n . common_curve $ private_curve pk
-- | Verify a digest using the public key.
verifyDigest :: HashAlgorithm hash => PublicKey -> Signature -> Digest hash -> Bool
verifyDigest (PublicKey _ PointO) _ _ = False
verifyDigest pk@(PublicKey curve q) (Signature r s) digest
-- | Verify a bytestring using the public key.
verify :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> PublicKey -> Signature -> msg -> Bool
verify _ (PublicKey _ PointO) _ _ = False
verify hashAlg pk@(PublicKey curve q) (Signature r s) msg
| r < 1 || r >= n || s < 1 || s >= n = False
| otherwise = maybe False (r ==) $ do
w <- inverse s n
let z = dsaTruncHashDigest digest n
let z = tHash hashAlg msg n
u1 = z * w `mod` n
u2 = r * w `mod` n
x = pointAddTwoMuls curve u1 g u2 q
@ -128,6 +110,10 @@ verifyDigest pk@(PublicKey curve q) (Signature r s) digest
g = ecc_g cc
cc = common_curve $ public_curve pk
-- | Verify a bytestring using the public key.
verify :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> PublicKey -> Signature -> msg -> Bool
verify hashAlg pk sig msg = verifyDigest pk sig (hashWith hashAlg msg)
-- | Truncate and hash.
tHash :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> msg -> Integer -> Integer
tHash hashAlg m n
| d > 0 = shiftR e d
| otherwise = e
where e = os2ip $ hashWith hashAlg m
d = hashDigestSize hashAlg * 8 - numBits n

View File

@ -8,6 +8,7 @@
-- P256 support
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
module Crypto.PubKey.ECC.P256
@ -21,9 +22,7 @@ module Crypto.PubKey.ECC.P256
, pointDh
, pointsMulVarTime
, pointIsValid
, pointIsAtInfinity
, toPoint
, pointX
, pointToIntegers
, pointFromIntegers
, pointToBinary
@ -32,13 +31,10 @@ module Crypto.PubKey.ECC.P256
-- * Scalar arithmetic
, scalarGenerate
, scalarZero
, scalarN
, scalarIsZero
, scalarAdd
, scalarSub
, scalarMul
, scalarInv
, scalarInvSafe
, scalarCmp
, scalarFromBinary
, scalarToBinary
@ -49,6 +45,7 @@ module Crypto.PubKey.ECC.P256
import Data.Word
import Foreign.Ptr
import Foreign.C.Types
import Control.Monad
import Crypto.Internal.Compat
import Crypto.Internal.Imports
@ -80,9 +77,6 @@ data P256Scalar
data P256Y
data P256X
order :: Integer
order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
------------------------------------------------------------------------
-- Point methods
------------------------------------------------------------------------
@ -116,7 +110,7 @@ pointAdd a b = withNewPoint $ \dx dy ->
-- | Negate a point
pointNegate :: Point -> Point
pointNegate a = withNewPoint $ \dx dy ->
withPoint a $ \ax ay ->
withPoint a $ \ax ay -> do
ccryptonite_p256e_point_negate ax ay dx dy
-- | Multiply a point by a scalar
@ -124,16 +118,16 @@ pointNegate a = withNewPoint $ \dx dy ->
-- warning: variable time
pointMul :: Scalar -> Point -> Point
pointMul scalar p = withNewPoint $ \dx dy ->
withScalar scalar $ \n -> withPoint p $ \px py ->
ccryptonite_p256e_point_mul n px py dx dy
withScalar scalar $ \n -> withPoint p $ \px py -> withScalarZero $ \nzero ->
ccryptonite_p256_points_mul_vartime nzero n px py dx dy
-- | Similar to 'pointMul', serializing the x coordinate as binary.
-- When scalar is multiple of point order the result is all zero.
pointDh :: ByteArray binary => Scalar -> Point -> binary
pointDh scalar p =
B.unsafeCreate scalarSize $ \dst -> withTempPoint $ \dx dy -> do
withScalar scalar $ \n -> withPoint p $ \px py ->
ccryptonite_p256e_point_mul n px py dx dy
withScalar scalar $ \n -> withPoint p $ \px py -> withScalarZero $ \nzero ->
ccryptonite_p256_points_mul_vartime nzero n px py dx dy
ccryptonite_p256_to_bin (castPtr dx) dst
-- | multiply the point @p with @n2 and add a lifted to curve value @n1
@ -152,19 +146,6 @@ pointIsValid p = unsafeDoIO $ withPoint p $ \px py -> do
r <- ccryptonite_p256_is_valid_point px py
return (r /= 0)
-- | Check if a 'Point' is the point at infinity
pointIsAtInfinity :: Point -> Bool
pointIsAtInfinity (Point b) = constAllZero b
-- | Return the x coordinate as a 'Scalar' if the point is not at infinity
pointX :: Point -> Maybe Scalar
pointX p
| pointIsAtInfinity p = Nothing
| otherwise = Just $
withNewScalarFreeze $ \d ->
withPoint p $ \px _ ->
ccryptonite_p256_mod ccryptonite_SECP256r1_n (castPtr px) (castPtr d)
-- | Convert a point to (x,y) Integers
pointToIntegers :: Point -> (Integer, Integer)
pointToIntegers p = unsafeDoIO $ withPoint p $ \px py ->
@ -207,12 +188,12 @@ pointFromBinary ba = unsafePointFromBinary ba >>= validatePoint
validatePoint :: Point -> CryptoFailable Point
validatePoint p
| pointIsValid p = CryptoPassed p
| otherwise = CryptoFailed CryptoError_PointCoordinatesInvalid
| otherwise = CryptoFailed $ CryptoError_PointCoordinatesInvalid
-- | Convert from binary to a point, possibly invalid
unsafePointFromBinary :: ByteArrayAccess ba => ba -> CryptoFailable Point
unsafePointFromBinary ba
| B.length ba /= pointSize = CryptoFailed CryptoError_PublicKeySizeInvalid
| B.length ba /= pointSize = CryptoFailed $ CryptoError_PublicKeySizeInvalid
| otherwise =
CryptoPassed $ withNewPoint $ \px py -> B.withByteArray ba $ \src -> do
ccryptonite_p256_from_bin src (castPtr px)
@ -235,39 +216,40 @@ scalarGenerate = unwrap . scalarFromBinary . witness <$> getRandomBytes 32
scalarZero :: Scalar
scalarZero = withNewScalarFreeze $ \d -> ccryptonite_p256_init d
-- | The scalar representing the curve order
scalarN :: Scalar
scalarN = throwCryptoError (scalarFromInteger order)
-- | Check if the scalar is 0
scalarIsZero :: Scalar -> Bool
scalarIsZero s = unsafeDoIO $ withScalar s $ \d -> do
result <- ccryptonite_p256_is_zero d
return $ result /= 0
scalarNeedReducing :: Ptr P256Scalar -> IO Bool
scalarNeedReducing d = do
c <- ccryptonite_p256_cmp d ccryptonite_SECP256r1_n
return (c >= 0)
-- | Perform addition between two scalars
--
-- > a + b
scalarAdd :: Scalar -> Scalar -> Scalar
scalarAdd a b =
withNewScalarFreeze $ \d -> withScalar a $ \pa -> withScalar b $ \pb ->
ccryptonite_p256e_modadd ccryptonite_SECP256r1_n pa pb d
withNewScalarFreeze $ \d -> withScalar a $ \pa -> withScalar b $ \pb -> do
carry <- ccryptonite_p256_add pa pb d
when (carry /= 0) $ void $ ccryptonite_p256_sub d ccryptonite_SECP256r1_n d
needReducing <- scalarNeedReducing d
when needReducing $ do
ccryptonite_p256_mod ccryptonite_SECP256r1_n d d
-- | Perform subtraction between two scalars
--
-- > a - b
scalarSub :: Scalar -> Scalar -> Scalar
scalarSub a b =
withNewScalarFreeze $ \d -> withScalar a $ \pa -> withScalar b $ \pb ->
ccryptonite_p256e_modsub ccryptonite_SECP256r1_n pa pb d
-- | Perform multiplication between two scalars
--
-- > a * b
scalarMul :: Scalar -> Scalar -> Scalar
scalarMul a b =
withNewScalarFreeze $ \d -> withScalar a $ \pa -> withScalar b $ \pb ->
ccryptonite_p256_modmul ccryptonite_SECP256r1_n pa 0 pb d
withNewScalarFreeze $ \d -> withScalar a $ \pa -> withScalar b $ \pb -> do
borrow <- ccryptonite_p256_sub pa pb d
when (borrow /= 0) $ void $ ccryptonite_p256_add d ccryptonite_SECP256r1_n d
--needReducing <- scalarNeedReducing d
--when needReducing $ do
-- ccryptonite_p256_mod ccryptonite_SECP256r1_n d d
-- | Give the inverse of the scalar
--
@ -279,14 +261,6 @@ scalarInv a =
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
ccryptonite_p256_modinv_vartime ccryptonite_SECP256r1_n pa b
-- | Give the inverse of the scalar using safe exponentiation
--
-- > 1 / a
scalarInvSafe :: Scalar -> Scalar
scalarInvSafe a =
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
ccryptonite_p256e_scalar_invert pa b
-- | Compare 2 Scalar
scalarCmp :: Scalar -> Scalar -> Ordering
scalarCmp a b = unsafeDoIO $
@ -297,7 +271,7 @@ scalarCmp a b = unsafeDoIO $
-- | convert a scalar from binary
scalarFromBinary :: ByteArrayAccess ba => ba -> CryptoFailable Scalar
scalarFromBinary ba
| B.length ba /= scalarSize = CryptoFailed CryptoError_SecretKeySizeInvalid
| B.length ba /= scalarSize = CryptoFailed $ CryptoError_SecretKeySizeInvalid
| otherwise =
CryptoPassed $ withNewScalarFreeze $ \p -> B.withByteArray ba $ \b ->
ccryptonite_p256_from_bin b p
@ -338,9 +312,18 @@ withNewScalarFreeze f = Scalar $ B.allocAndFreeze scalarSize f
withTempPoint :: (Ptr P256X -> Ptr P256Y -> IO a) -> IO a
withTempPoint f = allocTempScrubbed pointSize (\p -> let px = castPtr p in f px (pxToPy px))
withTempScalar :: (Ptr P256Scalar -> IO a) -> IO a
withTempScalar f = allocTempScrubbed scalarSize (f . castPtr)
withScalar :: Scalar -> (Ptr P256Scalar -> IO a) -> IO a
withScalar (Scalar d) f = B.withByteArray d f
withScalarZero :: (Ptr P256Scalar -> IO a) -> IO a
withScalarZero f =
withTempScalar $ \d -> do
ccryptonite_p256_init d
f d
allocTemp :: Int -> (Ptr Word8 -> IO a) -> IO a
allocTemp n f = ignoreSnd <$> B.allocRet n f
where
@ -369,20 +352,18 @@ foreign import ccall "cryptonite_p256_is_zero"
ccryptonite_p256_is_zero :: Ptr P256Scalar -> IO CInt
foreign import ccall "cryptonite_p256_clear"
ccryptonite_p256_clear :: Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256e_modadd"
ccryptonite_p256e_modadd :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_add"
ccryptonite_p256_add :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO CInt
foreign import ccall "cryptonite_p256_add_d"
ccryptonite_p256_add_d :: Ptr P256Scalar -> P256Digit -> Ptr P256Scalar -> IO CInt
foreign import ccall "cryptonite_p256e_modsub"
ccryptonite_p256e_modsub :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_sub"
ccryptonite_p256_sub :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO CInt
foreign import ccall "cryptonite_p256_cmp"
ccryptonite_p256_cmp :: Ptr P256Scalar -> Ptr P256Scalar -> IO CInt
foreign import ccall "cryptonite_p256_mod"
ccryptonite_p256_mod :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_modmul"
ccryptonite_p256_modmul :: Ptr P256Scalar -> Ptr P256Scalar -> P256Digit -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256e_scalar_invert"
ccryptonite_p256e_scalar_invert :: Ptr P256Scalar -> Ptr P256Scalar -> IO ()
--foreign import ccall "cryptonite_p256_modinv"
-- ccryptonite_p256_modinv :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_modinv_vartime"
@ -403,13 +384,6 @@ foreign import ccall "cryptonite_p256e_point_negate"
-> Ptr P256X -> Ptr P256Y
-> IO ()
-- compute (out_x,out_y) = n * (in_x,in_y)
foreign import ccall "cryptonite_p256e_point_mul"
ccryptonite_p256e_point_mul :: Ptr P256Scalar -- n
-> Ptr P256X -> Ptr P256Y -- in_{x,y}
-> Ptr P256X -> Ptr P256Y -- out_{x,y}
-> IO ()
-- compute (out_x,out,y) = n1 * G + n2 * (in_x,in_y)
foreign import ccall "cryptonite_p256_points_mul_vartime"
ccryptonite_p256_points_mul_vartime :: Ptr P256Scalar -- n1

View File

@ -33,7 +33,7 @@ import Crypto.Number.Basic (numBits)
-- | Define either a binary curve or a prime curve.
data Curve = CurveF2m CurveBinary -- ^ 𝔽(2^m)
| CurveFP CurvePrime -- ^ 𝔽p
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
-- | ECC Public Point
type PublicPoint = Point
@ -44,7 +44,7 @@ type PrivateNumber = Integer
-- | Define a point on a curve.
data Point = Point Integer Integer
| PointO -- ^ Point at Infinity
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
instance NFData Point where
rnf (Point x y) = x `seq` y `seq` ()
@ -53,7 +53,7 @@ instance NFData Point where
-- | Define an elliptic curve in 𝔽(2^m).
-- The firt parameter is the Integer representatioin of the irreducible polynomial f(x).
data CurveBinary = CurveBinary Integer CurveCommon
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
instance NFData CurveBinary where
rnf (CurveBinary i cc) = i `seq` cc `seq` ()
@ -61,7 +61,7 @@ instance NFData CurveBinary where
-- | Define an elliptic curve in 𝔽p.
-- The first parameter is the Prime Number.
data CurvePrime = CurvePrime Integer CurveCommon
deriving (Show,Read,Eq,Data)
deriving (Show,Read,Eq,Data,Typeable)
-- | Parameters in common between binary and prime curves.
common_curve :: Curve -> CurveCommon
@ -84,7 +84,7 @@ data CurveCommon = CurveCommon
, ecc_g :: Point -- ^ base point
, ecc_n :: Integer -- ^ order of G
, ecc_h :: Integer -- ^ cofactor
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
-- | Define names for known recommended curves.
data CurveName =
@ -121,7 +121,7 @@ data CurveName =
| SEC_t409r1
| SEC_t571k1
| SEC_t571r1
deriving (Show,Read,Eq,Ord,Enum,Bounded,Data)
deriving (Show,Read,Eq,Ord,Enum,Bounded,Data,Typeable)
{-
curvesOIDs :: [ (CurveName, [Integer]) ]

View File

@ -1,272 +0,0 @@
-- |
-- Module : Crypto.PubKey.ECDSA
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : unknown
--
-- Elliptic Curve Digital Signature Algorithm, with the parameterized
-- curve implementations provided by module "Crypto.ECC".
--
-- Public/private key pairs can be generated using
-- 'curveGenerateKeyPair' or decoded from binary.
--
-- /WARNING:/ Only curve P-256 has constant-time implementation.
-- Signature operations with P-384 and P-521 may leak the private key.
--
-- Signature verification should be safe for all curves.
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Crypto.PubKey.ECDSA
( EllipticCurveECDSA (..)
-- * Public keys
, PublicKey
, encodePublic
, decodePublic
, toPublic
-- * Private keys
, PrivateKey
, encodePrivate
, decodePrivate
-- * Signatures
, Signature(..)
, signatureFromIntegers
, signatureToIntegers
-- * Generation and verification
, signWith
, signDigestWith
, sign
, signDigest
, verify
, verifyDigest
) where
import Control.Monad
import Crypto.ECC
import qualified Crypto.ECC.Simple.Types as Simple
import Crypto.Error
import Crypto.Hash
import Crypto.Hash.Types
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess)
import Crypto.Internal.Imports
import Crypto.Number.ModArithmetic (inverseFermat)
import qualified Crypto.PubKey.ECC.P256 as P256
import Crypto.Random.Types
import Data.Bits
import qualified Data.ByteArray as B
import Data.Data
import Foreign.Ptr (Ptr)
import Foreign.Storable (peekByteOff, pokeByteOff)
-- | Represent a ECDSA signature namely R and S.
data Signature curve = Signature
{ sign_r :: Scalar curve -- ^ ECDSA r
, sign_s :: Scalar curve -- ^ ECDSA s
}
deriving instance Eq (Scalar curve) => Eq (Signature curve)
deriving instance Show (Scalar curve) => Show (Signature curve)
instance NFData (Scalar curve) => NFData (Signature curve) where
rnf (Signature r s) = rnf r `seq` rnf s `seq` ()
-- | ECDSA Public Key.
type PublicKey curve = Point curve
-- | ECDSA Private Key.
type PrivateKey curve = Scalar curve
-- | Elliptic curves with ECDSA capabilities.
class EllipticCurveBasepointArith curve => EllipticCurveECDSA curve where
-- | Is a scalar in the accepted range for ECDSA
scalarIsValid :: proxy curve -> Scalar curve -> Bool
-- | Test whether the scalar is zero
scalarIsZero :: proxy curve -> Scalar curve -> Bool
scalarIsZero prx s = s == throwCryptoError (scalarFromInteger prx 0)
-- | Scalar inversion modulo the curve order
scalarInv :: proxy curve -> Scalar curve -> Maybe (Scalar curve)
-- | Return the point X coordinate as a scalar
pointX :: proxy curve -> Point curve -> Maybe (Scalar curve)
instance EllipticCurveECDSA Curve_P256R1 where
scalarIsValid _ s = not (P256.scalarIsZero s)
&& P256.scalarCmp s P256.scalarN == LT
scalarIsZero _ = P256.scalarIsZero
scalarInv _ s = let inv = P256.scalarInvSafe s
in if P256.scalarIsZero inv then Nothing else Just inv
pointX _ = P256.pointX
instance EllipticCurveECDSA Curve_P384R1 where
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p384r1)
scalarIsZero _ = ecScalarIsZero
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p384r1)
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p384r1)
instance EllipticCurveECDSA Curve_P521R1 where
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p521r1)
scalarIsZero _ = ecScalarIsZero
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p521r1)
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p521r1)
-- | Create a signature from integers (R, S).
signatureFromIntegers :: EllipticCurveECDSA curve
=> proxy curve -> (Integer, Integer) -> CryptoFailable (Signature curve)
signatureFromIntegers prx (r, s) =
liftA2 Signature (scalarFromInteger prx r) (scalarFromInteger prx s)
-- | Get integers (R, S) from a signature.
--
-- The values can then be used to encode the signature to binary with
-- ASN.1.
signatureToIntegers :: EllipticCurveECDSA curve
=> proxy curve -> Signature curve -> (Integer, Integer)
signatureToIntegers prx sig =
(scalarToInteger prx $ sign_r sig, scalarToInteger prx $ sign_s sig)
-- | Encode a public key into binary form, i.e. the uncompressed encoding
-- referenced from <https://tools.ietf.org/html/rfc5480 RFC 5480> section 2.2.
encodePublic :: (EllipticCurve curve, ByteArray bs)
=> proxy curve -> PublicKey curve -> bs
encodePublic = encodePoint
-- | Try to decode the binary form of a public key.
decodePublic :: (EllipticCurve curve, ByteArray bs)
=> proxy curve -> bs -> CryptoFailable (PublicKey curve)
decodePublic = decodePoint
-- | Encode a private key into binary form, i.e. the @privateKey@ field
-- described in <https://tools.ietf.org/html/rfc5915 RFC 5915>.
encodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
=> proxy curve -> PrivateKey curve -> bs
encodePrivate = encodeScalar
-- | Try to decode the binary form of a private key.
decodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
=> proxy curve -> bs -> CryptoFailable (PrivateKey curve)
decodePrivate = decodeScalar
-- | Create a public key from a private key.
toPublic :: EllipticCurveECDSA curve
=> proxy curve -> PrivateKey curve -> PublicKey curve
toPublic = pointBaseSmul
-- | Sign digest using the private key and an explicit k scalar.
signDigestWith :: (EllipticCurveECDSA curve, HashAlgorithm hash)
=> proxy curve -> Scalar curve -> PrivateKey curve -> Digest hash -> Maybe (Signature curve)
signDigestWith prx k d digest = do
let z = tHashDigest prx digest
point = pointBaseSmul prx k
r <- pointX prx point
kInv <- scalarInv prx k
let s = scalarMul prx kInv (scalarAdd prx z (scalarMul prx r d))
when (scalarIsZero prx r || scalarIsZero prx s) Nothing
return $ Signature r s
-- | Sign message using the private key and an explicit k scalar.
signWith :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> Scalar curve -> PrivateKey curve -> hash -> msg -> Maybe (Signature curve)
signWith prx k d hashAlg msg = signDigestWith prx k d (hashWith hashAlg msg)
-- | Sign a digest using hash and private key.
signDigest :: (EllipticCurveECDSA curve, MonadRandom m, HashAlgorithm hash)
=> proxy curve -> PrivateKey curve -> Digest hash -> m (Signature curve)
signDigest prx pk digest = do
k <- curveGenerateScalar prx
case signDigestWith prx k pk digest of
Nothing -> signDigest prx pk digest
Just sig -> return sig
-- | Sign a message using hash and private key.
sign :: (EllipticCurveECDSA curve, MonadRandom m, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> PrivateKey curve -> hash -> msg -> m (Signature curve)
sign prx pk hashAlg msg = signDigest prx pk (hashWith hashAlg msg)
-- | Verify a digest using hash and public key.
verifyDigest :: (EllipticCurveECDSA curve, HashAlgorithm hash)
=> proxy curve -> PublicKey curve -> Signature curve -> Digest hash -> Bool
verifyDigest prx q (Signature r s) digest
| not (scalarIsValid prx r) = False
| not (scalarIsValid prx s) = False
| otherwise = maybe False (r ==) $ do
w <- scalarInv prx s
let z = tHashDigest prx digest
u1 = scalarMul prx z w
u2 = scalarMul prx r w
x = pointsSmulVarTime prx u1 u2 q
pointX prx x
-- Note: precondition q /= PointO is not tested because we assume
-- point decoding never decodes point at infinity.
-- | Verify a signature using hash and public key.
verify :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
=> proxy curve -> hash -> PublicKey curve -> Signature curve -> msg -> Bool
verify prx hashAlg q sig msg = verifyDigest prx q sig (hashWith hashAlg msg)
-- | Truncate a digest based on curve order size.
tHashDigest :: (EllipticCurveECDSA curve, HashAlgorithm hash)
=> proxy curve -> Digest hash -> Scalar curve
tHashDigest prx (Digest digest) = throwCryptoError $ decodeScalar prx encoded
where m = curveOrderBits prx
d = m - B.length digest * 8
(n, r) = m `divMod` 8
n' = if r > 0 then succ n else n
encoded
| d > 0 = B.zero (n' - B.length digest) `B.append` digest
| d == 0 = digest
| r == 0 = B.take n digest
| otherwise = shiftBytes digest
shiftBytes bs = B.allocAndFreeze n' $ \dst ->
B.withByteArray bs $ \src -> go dst src 0 0
go :: Ptr Word8 -> Ptr Word8 -> Word8 -> Int -> IO ()
go dst src !a i
| i >= n' = return ()
| otherwise = do
b <- peekByteOff src i
pokeByteOff dst i (unsafeShiftR b (8 - r) .|. unsafeShiftL a r)
go dst src b (succ i)
ecScalarIsValid :: Simple.Curve c => proxy c -> Simple.Scalar c -> Bool
ecScalarIsValid prx (Simple.Scalar s) = s > 0 && s < n
where n = Simple.curveEccN $ Simple.curveParameters prx
ecScalarIsZero :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Bool
ecScalarIsZero (Simple.Scalar a) = a == 0
ecScalarInv :: Simple.Curve c
=> proxy c -> Simple.Scalar c -> Maybe (Simple.Scalar c)
ecScalarInv prx (Simple.Scalar s)
| i == 0 = Nothing
| otherwise = Just $ Simple.Scalar i
where n = Simple.curveEccN $ Simple.curveParameters prx
i = inverseFermat s n
ecPointX :: Simple.Curve c
=> proxy c -> Simple.Point c -> Maybe (Simple.Scalar c)
ecPointX _ Simple.PointO = Nothing
ecPointX prx (Simple.Point x _) = Just (Simple.Scalar $ x `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters prx

View File

@ -27,6 +27,7 @@ module Crypto.PubKey.ECIES
import Crypto.ECC
import Crypto.Error
import Crypto.Random
import Crypto.Internal.Proxy
-- | Generate random a new Shared secret and the associated point
-- to do a ECIES style encryption

View File

@ -1,390 +0,0 @@
-- |
-- Module : Crypto.PubKey.EdDSA
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- EdDSA signature generation and verification, implemented in Haskell and
-- parameterized with elliptic curve and hash algorithm. Only edwards25519 is
-- supported at the moment.
--
-- The module provides \"context\" and \"prehash\" variants defined in
-- <https://tools.ietf.org/html/rfc8032 RFC 8032>.
--
-- This implementation is most useful when wanting to customize the hash
-- algorithm. See module "Crypto.PubKey.Ed25519" for faster Ed25519 with
-- SHA-512.
--
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
module Crypto.PubKey.EdDSA
( SecretKey
, PublicKey
, Signature
-- * Curves with EdDSA implementation
, EllipticCurveEdDSA(CurveDigestSize)
, publicKeySize
, secretKeySize
, signatureSize
-- * Smart constructors
, signature
, publicKey
, secretKey
-- * Methods
, toPublic
, sign
, signCtx
, signPh
, verify
, verifyCtx
, verifyPh
, generateSecretKey
) where
import Data.Bits
import Data.ByteArray (ByteArray, ByteArrayAccess, Bytes, ScrubbedBytes, View)
import qualified Data.ByteArray as B
import Data.ByteString (ByteString)
import Data.Proxy
import Crypto.ECC
import qualified Crypto.ECC.Edwards25519 as Edwards25519
import Crypto.Error
import Crypto.Hash (Digest)
import Crypto.Hash.IO
import Crypto.Random
import GHC.TypeLits (KnownNat, Nat)
import Crypto.Internal.Builder
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Crypto.Internal.Nat (integralNatVal)
import Foreign.Storable
-- API
-- | An EdDSA Secret key
newtype SecretKey curve = SecretKey ScrubbedBytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | An EdDSA public key
newtype PublicKey curve hash = PublicKey Bytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | An EdDSA signature
newtype Signature curve hash = Signature Bytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | Elliptic curves with an implementation of EdDSA
class ( EllipticCurveBasepointArith curve
, KnownNat (CurveDigestSize curve)
) => EllipticCurveEdDSA curve where
-- | Size of the digest for this curve (in bytes)
type CurveDigestSize curve :: Nat
-- | Size of secret keys for this curve (in bytes)
secretKeySize :: proxy curve -> Int
-- hash with specified parameters
hashWithDom :: (HashAlgorithm hash, ByteArrayAccess ctx, ByteArrayAccess msg)
=> proxy curve -> hash -> Bool -> ctx -> Builder -> msg -> Bytes
-- conversion between scalar, point and public key
pointPublic :: proxy curve -> Point curve -> PublicKey curve hash
publicPoint :: proxy curve -> PublicKey curve hash -> CryptoFailable (Point curve)
encodeScalarLE :: ByteArray bs => proxy curve -> Scalar curve -> bs
decodeScalarLE :: ByteArrayAccess bs => proxy curve -> bs -> CryptoFailable (Scalar curve)
-- how to use bits in a secret key
scheduleSecret :: ( HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
)
=> proxy curve
-> hash
-> SecretKey curve
-> (Scalar curve, View Bytes)
-- | Size of public keys for this curve (in bytes)
publicKeySize :: EllipticCurveEdDSA curve => proxy curve -> Int
publicKeySize prx = signatureSize prx `div` 2
-- | Size of signatures for this curve (in bytes)
signatureSize :: forall proxy curve . EllipticCurveEdDSA curve
=> proxy curve -> Int
signatureSize _ = integralNatVal (Proxy :: Proxy (CurveDigestSize curve))
-- Constructors
-- | Try to build a public key from a bytearray
publicKey :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ba
)
=> proxy curve -> hash -> ba -> CryptoFailable (PublicKey curve hash)
publicKey prx _ bs
| B.length bs == publicKeySize prx =
CryptoPassed (PublicKey $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_PublicKeySizeInvalid
-- | Try to build a secret key from a bytearray
secretKey :: (EllipticCurveEdDSA curve, ByteArrayAccess ba)
=> proxy curve -> ba -> CryptoFailable (SecretKey curve)
secretKey prx bs
| B.length bs == secretKeySize prx =
CryptoPassed (SecretKey $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_SecretKeyStructureInvalid
-- | Try to build a signature from a bytearray
signature :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ba
)
=> proxy curve -> hash -> ba -> CryptoFailable (Signature curve hash)
signature prx _ bs
| B.length bs == signatureSize prx =
CryptoPassed (Signature $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_SecretKeyStructureInvalid
-- Conversions
-- | Generate a secret key
generateSecretKey :: (EllipticCurveEdDSA curve, MonadRandom m)
=> proxy curve -> m (SecretKey curve)
generateSecretKey prx = SecretKey <$> getRandomBytes (secretKeySize prx)
-- | Create a public key from a secret key
toPublic :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
)
=> proxy curve -> hash -> SecretKey curve -> PublicKey curve hash
toPublic prx alg priv =
let p = pointBaseSmul prx (secretScalar prx alg priv)
in pointPublic prx p
secretScalar :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
)
=> proxy curve -> hash -> SecretKey curve -> Scalar curve
secretScalar prx alg priv = fst (scheduleSecret prx alg priv)
-- EdDSA signature generation & verification
-- | Sign a message using the key pair
sign :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess msg
)
=> proxy curve -> SecretKey curve -> PublicKey curve hash -> msg -> Signature curve hash
sign prx = signCtx prx emptyCtx
-- | Verify a message
verify :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess msg
)
=> proxy curve -> PublicKey curve hash -> msg -> Signature curve hash -> Bool
verify prx = verifyCtx prx emptyCtx
-- | Sign a message using the key pair under context @ctx@
signCtx :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
, ByteArrayAccess msg
)
=> proxy curve -> ctx -> SecretKey curve -> PublicKey curve hash -> msg -> Signature curve hash
signCtx prx = signPhCtx prx False
-- | Verify a message under context @ctx@
verifyCtx :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
, ByteArrayAccess msg
)
=> proxy curve -> ctx -> PublicKey curve hash -> msg -> Signature curve hash -> Bool
verifyCtx prx = verifyPhCtx prx False
-- | Sign a prehashed message using the key pair under context @ctx@
signPh :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
)
=> proxy curve -> ctx -> SecretKey curve -> PublicKey curve hash -> Digest prehash -> Signature curve hash
signPh prx = signPhCtx prx True
-- | Verify a prehashed message under context @ctx@
verifyPh :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
)
=> proxy curve -> ctx -> PublicKey curve hash -> Digest prehash -> Signature curve hash -> Bool
verifyPh prx = verifyPhCtx prx True
signPhCtx :: forall proxy curve hash ctx msg .
( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
, ByteArrayAccess msg
)
=> proxy curve -> Bool -> ctx -> SecretKey curve -> PublicKey curve hash -> msg -> Signature curve hash
signPhCtx prx ph ctx priv pub msg =
let alg = undefined :: hash
(s, prefix) = scheduleSecret prx alg priv
digR = hashWithDom prx alg ph ctx (bytes prefix) msg
r = decodeScalarNoErr prx digR
pR = pointBaseSmul prx r
bsR = encodePoint prx pR
sK = getK prx ph ctx pub bsR msg
sS = scalarAdd prx r (scalarMul prx sK s)
in encodeSignature prx (bsR, pR, sS)
verifyPhCtx :: ( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
, ByteArrayAccess msg
)
=> proxy curve -> Bool -> ctx -> PublicKey curve hash -> msg -> Signature curve hash -> Bool
verifyPhCtx prx ph ctx pub msg sig =
case doVerify of
CryptoPassed verified -> verified
CryptoFailed _ -> False
where
doVerify = do
(bsR, pR, sS) <- decodeSignature prx sig
nPub <- pointNegate prx `fmap` publicPoint prx pub
let sK = getK prx ph ctx pub bsR msg
pR' = pointsSmulVarTime prx sS sK nPub
return (pR == pR')
emptyCtx :: Bytes
emptyCtx = B.empty
getK :: forall proxy curve hash ctx msg .
( EllipticCurveEdDSA curve
, HashAlgorithm hash
, HashDigestSize hash ~ CurveDigestSize curve
, ByteArrayAccess ctx
, ByteArrayAccess msg
)
=> proxy curve -> Bool -> ctx -> PublicKey curve hash -> Bytes -> msg -> Scalar curve
getK prx ph ctx (PublicKey pub) bsR msg =
let alg = undefined :: hash
digK = hashWithDom prx alg ph ctx (bytes bsR <> bytes pub) msg
in decodeScalarNoErr prx digK
encodeSignature :: EllipticCurveEdDSA curve
=> proxy curve
-> (Bytes, Point curve, Scalar curve)
-> Signature curve hash
encodeSignature prx (bsR, _, sS) = Signature $ buildAndFreeze $
bytes bsR <> bytes bsS <> zero len0
where
bsS = encodeScalarLE prx sS :: Bytes
len0 = signatureSize prx - B.length bsR - B.length bsS
decodeSignature :: ( EllipticCurveEdDSA curve
, HashDigestSize hash ~ CurveDigestSize curve
)
=> proxy curve
-> Signature curve hash
-> CryptoFailable (Bytes, Point curve, Scalar curve)
decodeSignature prx (Signature bs) = do
let (bsR, bsS) = B.splitAt (publicKeySize prx) bs
pR <- decodePoint prx bsR
sS <- decodeScalarLE prx bsS
return (bsR, pR, sS)
-- implementations are supposed to decode any scalar up to the size of the digest
decodeScalarNoErr :: (EllipticCurveEdDSA curve, ByteArrayAccess bs)
=> proxy curve -> bs -> Scalar curve
decodeScalarNoErr prx = unwrap "decodeScalarNoErr" . decodeScalarLE prx
unwrap :: String -> CryptoFailable a -> a
unwrap name (CryptoFailed _) = error (name ++ ": assumption failed")
unwrap _ (CryptoPassed x) = x
-- Ed25519 implementation
instance EllipticCurveEdDSA Curve_Edwards25519 where
type CurveDigestSize Curve_Edwards25519 = 64
secretKeySize _ = 32
hashWithDom _ alg ph ctx bss
| not ph && B.null ctx = digestDomMsg alg bss
| otherwise = digestDomMsg alg (dom <> bss)
where dom = bytes ("SigEd25519 no Ed25519 collisions" :: ByteString) <>
byte (if ph then 1 else 0) <>
byte (fromIntegral $ B.length ctx) <>
bytes ctx
pointPublic _ = PublicKey . Edwards25519.pointEncode
publicPoint _ = Edwards25519.pointDecode
encodeScalarLE _ = Edwards25519.scalarEncode
decodeScalarLE _ = Edwards25519.scalarDecodeLong
scheduleSecret prx alg priv =
(decodeScalarNoErr prx clamped, B.dropView hashed 32)
where
hashed = digest alg $ \update -> update priv
clamped :: Bytes
clamped = B.copyAndFreeze (B.takeView hashed 32) $ \p -> do
b0 <- peekElemOff p 0 :: IO Word8
b31 <- peekElemOff p 31 :: IO Word8
pokeElemOff p 31 ((b31 .&. 0x7F) .|. 0x40)
pokeElemOff p 0 (b0 .&. 0xF8)
{-
Optimize hashing by limiting the number of roundtrips between Haskell and C.
Hash "update" functions do not use unsafe FFI call, so better concanetate
small fragments together and call the update function once.
Using the IO hash interface avoids context buffer copies.
Data type Digest is not used directly but converted to Bytes early. Any use of
withByteArray on the unpinned Digest backend would require copy through a
pinned trampoline.
-}
digestDomMsg :: (HashAlgorithm alg, ByteArrayAccess msg)
=> alg -> Builder -> msg -> Bytes
digestDomMsg alg bss bs = digest alg $ \update ->
update (buildAndFreeze bss :: Bytes) >> update bs
digest :: HashAlgorithm alg
=> alg
-> ((forall bs . ByteArrayAccess bs => bs -> IO ()) -> IO ())
-> Bytes
digest alg fn = B.convert $ unsafeDoIO $ do
mc <- hashMutableInitWith alg
fn (hashMutableUpdate mc)
hashMutableFinalize mc

View File

@ -8,18 +8,10 @@
module Crypto.PubKey.Internal
( and'
, (&&!)
, dsaTruncHash
, dsaTruncHashDigest
) where
import Data.Bits (shiftR)
import Data.List (foldl')
import Crypto.Hash
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Crypto.Number.Basic (numBits)
import Crypto.Number.Serialize
-- | This is a strict version of and
and' :: [Bool] -> Bool
and' l = foldl' (&&!) True l
@ -30,18 +22,3 @@ True &&! True = True
True &&! False = False
False &&! True = False
False &&! False = False
-- | Truncate and hash for DSA and ECDSA.
dsaTruncHash :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> msg -> Integer -> Integer
dsaTruncHash hashAlg = dsaTruncHashDigest . hashWith hashAlg
-- | Truncate a digest for DSA and ECDSA.
dsaTruncHashDigest :: HashAlgorithm hash => Digest hash -> Integer -> Integer
dsaTruncHashDigest digest n
| d > 0 = shiftR e d
| otherwise = e
where e = os2ip digest
d = hashDigestSize (getHashAlg digest) * 8 - numBits n
getHashAlg :: Digest hash -> hash
getHashAlg _ = undefined

View File

@ -16,6 +16,7 @@ module Crypto.PubKey.RSA
, generateBlinder
) where
import Crypto.Internal.Imports
import Crypto.Random.Types
import Crypto.Number.ModArithmetic (inverse, inverseCoprimes)
import Crypto.Number.Generate (generateMax)
@ -54,7 +55,7 @@ toPositive int
--
generateWith :: (Integer, Integer) -- ^ chosen distinct primes p and q
-> Int -- ^ size in bytes
-> Integer -- ^ RSA public exponent 'e'
-> Integer -- ^ RSA public exponant 'e'
-> Maybe (PublicKey, PrivateKey)
generateWith (p,q) size e =
case inverse e phi of
@ -80,7 +81,7 @@ generateWith (p,q) size e =
-- | generate a pair of (private, public) key of size in bytes.
generate :: MonadRandom m
=> Int -- ^ size in bytes
-> Integer -- ^ RSA public exponent 'e'
-> Integer -- ^ RSA public exponant 'e'
-> m (PublicKey, PrivateKey)
generate size e = loop
where

View File

@ -111,8 +111,8 @@ pad len m
-- | Produce a standard PKCS1.5 padding for signature
padSignature :: ByteArray signature => Int -> signature -> Either Error signature
padSignature klen signature
| klen < siglen + 11 = Left SignatureTooLong
| otherwise = Right (B.pack padding `B.append` signature)
| klen < siglen+1 = Left SignatureTooLong
| otherwise = Right (B.pack padding `B.append` signature)
where
siglen = B.length signature
padding = 0 : 1 : (replicate (klen - siglen - 3) 0xff ++ [0])

View File

@ -26,12 +26,11 @@ import Crypto.PubKey.RSA.Prim
import Crypto.PubKey.RSA (generateBlinder)
import Crypto.PubKey.MaskGenFunction
import Crypto.Hash
import Crypto.Number.Basic (numBits)
import Data.Bits (xor, shiftR, (.&.))
import Data.Word
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray)
import qualified Crypto.Internal.ByteArray as B (convert, eq)
import qualified Crypto.Internal.ByteArray as B (convert)
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
@ -70,19 +69,18 @@ signDigestWithSalt :: HashAlgorithm hash
-> Digest hash -- ^ Message digest
-> Either Error ByteString
signDigestWithSalt salt blinder params pk digest
| emLen < hashLen + saltLen + 2 = Left InvalidParameters
| otherwise = Right $ dp blinder pk em
| k < hashLen + saltLen + 2 = Left InvalidParameters
| otherwise = Right $ dp blinder pk em
where k = private_size pk
emLen = if emTruncate pubBits then k - 1 else k
mHash = B.convert digest
dbLen = emLen - hashLen - 1
dbLen = k - hashLen - 1
saltLen = B.length salt
hashLen = hashDigestSize (pssHash params)
pubBits = numBits (private_n pk)
pubBits = private_size pk * 8 -- to change if public_size is converted in bytes
m' = B.concat [B.replicate 8 0,mHash,salt]
h = B.convert $ hashWith (pssHash params) m'
db = B.concat [B.replicate (dbLen - saltLen - 1) 0,B.singleton 1,salt]
dbmask = pssMaskGenAlg params h dbLen
dbmask = (pssMaskGenAlg params) h dbLen
maskedDB = B.pack $ normalizeToKeySize pubBits $ B.zipWith xor db dbmask
em = B.concat [maskedDB, h, B.singleton (pssTrailerField params)]
@ -150,7 +148,7 @@ verify :: HashAlgorithm hash
-> ByteString -- ^ Message to verify
-> ByteString -- ^ Signature
-> Bool
verify params pk m = verifyDigest params pk mHash
verify params pk m s = verifyDigest params pk mHash s
where mHash = hashWith (pssHash params) m
-- | Verify a signature using the PSS Parameters
@ -163,37 +161,30 @@ verifyDigest :: HashAlgorithm hash
-> ByteString -- ^ Signature
-> Bool
verifyDigest params pk digest s
| B.length s /= k = False
| B.any (/= 0) pre = False
| public_size pk /= B.length s = False
| B.last em /= pssTrailerField params = False
| B.any (/= 0) ps0 = False
| not (B.all (== 0) ps0) = False
| b1 /= B.singleton 1 = False
| otherwise = B.eq h h'
| otherwise = h == B.convert h'
where -- parameters
hashLen = hashDigestSize (pssHash params)
mHash = B.convert digest
k = public_size pk
emLen = if emTruncate pubBits then k - 1 else k
dbLen = emLen - hashLen - 1
pubBits = numBits (public_n pk)
dbLen = public_size pk - hashLen - 1
pubBits = public_size pk * 8 -- to change if public_size is converted in bytes
-- unmarshall fields
(pre, em) = B.splitAt (k - emLen) (ep pk s) -- drop 0..1 byte
maskedDB = B.take dbLen em
em = ep pk s
maskedDB = B.take (B.length em - hashLen - 1) em
h = B.take hashLen $ B.drop (B.length maskedDB) em
dbmask = pssMaskGenAlg params h dbLen
dbmask = (pssMaskGenAlg params) h dbLen
db = B.pack $ normalizeToKeySize pubBits $ B.zipWith xor maskedDB dbmask
(ps0,z) = B.break (== 1) db
(b1,salt) = B.splitAt 1 z
m' = B.concat [B.replicate 8 0,mHash,salt]
h' = hashWith (pssHash params) m'
-- When the modulus has bit length 1 modulo 8 we drop the first byte.
emTruncate :: Int -> Bool
emTruncate bits = ((bits-1) .&. 0x7) == 0
normalizeToKeySize :: Int -> [Word8] -> [Word8]
normalizeToKeySize _ [] = [] -- very unlikely
normalizeToKeySize bits (x:xs) = x .&. mask : xs
where mask = if sh > 0 then 0xff `shiftR` (8-sh) else 0xff
sh = (bits-1) .&. 0x7
sh = ((bits-1) .&. 0x7)

View File

@ -41,8 +41,8 @@ data Error =
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
, public_e :: Integer -- ^ public exponent e
} deriving (Show,Read,Eq,Data)
, public_e :: Integer -- ^ public exponant e
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PublicKey where
rnf (PublicKey sz n e) = rnf n `seq` rnf e `seq` sz `seq` ()
@ -59,13 +59,13 @@ instance NFData PublicKey where
--
data PrivateKey = PrivateKey
{ private_pub :: PublicKey -- ^ public part of a private key (size, n and e)
, private_d :: Integer -- ^ private exponent d
, private_d :: Integer -- ^ private exponant d
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_dP :: Integer -- ^ d mod (p-1)
, private_dQ :: Integer -- ^ d mod (q-1)
, private_qinv :: Integer -- ^ q^(-1) mod p
} deriving (Show,Read,Eq,Data)
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PrivateKey where
rnf (PrivateKey pub d p q dp dq qinv) =
@ -87,7 +87,7 @@ private_e = public_e . private_pub
--
-- note the RSA private key contains already an instance of public key for efficiency
newtype KeyPair = KeyPair PrivateKey
deriving (Show,Read,Eq,Data,NFData)
deriving (Show,Read,Eq,Data,Typeable,NFData)
-- | Public key of a RSA KeyPair
toPublicKey :: KeyPair -> PublicKey

View File

@ -1,230 +0,0 @@
-- |
-- Module : Crypto.PubKey.Rabin.Basic
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Rabin cryptosystem for public-key cryptography and digital signature.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Basic
( PublicKey(..)
, PrivateKey(..)
, Signature(..)
, generate
, encrypt
, encryptWithSeed
, decrypt
, sign
, signWith
, verify
) where
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Data
import Data.Either (rights)
import Crypto.Hash
import Crypto.Number.Basic (gcde, numBytes)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (i2osp, i2ospOf_, os2ip)
import Crypto.PubKey.Rabin.OAEP
import Crypto.PubKey.Rabin.Types
import Crypto.Random (MonadRandom, getRandomBytes)
-- | Represent a Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data)
-- | Represent a Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_a :: Integer
, private_b :: Integer
} deriving (Show, Read, Eq, Data)
-- | Rabin Signature.
data Signature = Signature (Integer, Integer) deriving (Show, Read, Eq, Data)
-- | Generate a pair of (private, public) key of size in bytes.
-- Primes p and q are both congruent 3 mod 4.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 4 == 3) (\q -> q `mod` 4 == 3)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
(a, b, _) = gcde p q
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_a = a
, private_b = b }
in (publicKey, privateKey)
-- | Encrypt plaintext using public key an a predefined OAEP seed.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
encryptWithSeed :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP padding
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> Either Error ByteString
encryptWithSeed seed oaep pk m =
let n = public_n pk
k = numBytes n
in do
m' <- pad seed oaep k m
let m'' = os2ip m'
return $ i2osp $ expSafe m'' 2 n
-- | Encrypt plaintext using public key.
encrypt :: (HashAlgorithm hash, MonadRandom m)
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> m (Either Error ByteString)
encrypt oaep pk m = do
seed <- getRandomBytes hashLen
return $ encryptWithSeed seed oaep pk m
where
hashLen = hashDigestSize (oaepHash oaep)
-- | Decrypt ciphertext using private key.
--
-- See algorithm 8.12 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
decrypt :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PrivateKey -- ^ private key
-> ByteString -- ^ ciphertext
-> Maybe ByteString
decrypt oaep pk c =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
k = numBytes n
c' = os2ip c
solutions = rights $ toList $ mapTuple (unpad oaep k . i2ospOf_ k) $ sqroot' c' p q a b n
in if length solutions /= 1 then Nothing
else Just $ head solutions
where toList (w, x, y, z) = w:x:y:z:[]
mapTuple f (w, x, y, z) = (f w, f x, f y, f z)
-- | Sign message using padding, hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
signWith :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Signature
signWith padding pk hashAlg m = do
h <- calculateHash padding pk hashAlg m
signature <- calculateSignature h
return signature
where
calculateSignature h =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
in if h >= n then Left MessageTooLong
else let (r, _, _, _) = sqroot' h p q a b n
in Right $ Signature (os2ip padding, r)
-- | Sign message using hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
sign :: (MonadRandom m, HashAlgorithm hash)
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> m (Either Error Signature)
sign pk hashAlg m = do
padding <- findPadding
return $ signWith padding pk hashAlg m
where
findPadding = do
padding <- getRandomBytes 8
case calculateHash padding pk hashAlg m of
Right _ -> return padding
_ -> findPadding
-- | Calculate hash of message and padding.
-- If the padding is valid, then the result of the hash operation is returned, otherwise an error.
calculateHash :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
calculateHash padding pk hashAlg m =
let p = private_p pk
q = private_q pk
h = os2ip $ hashWith hashAlg $ B.append padding m
in case (jacobi (h `mod` p) p, jacobi (h `mod` q) q) of
(Just 1, Just 1) -> Right h
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
verify :: HashAlgorithm hash
=> PublicKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Signature -- ^ signature
-> Bool
verify pk hashAlg m (Signature (padding, s)) =
let n = public_n pk
p = i2osp padding
h = os2ip $ hashWith hashAlg $ B.append p m
h' = expSafe s 2 n
in h' == h
-- | Square roots modulo prime p where p is congruent 3 mod 4
-- Value a must be a quadratic residue modulo p (i.e. jacobi symbol (a/n) = 1).
--
-- See algorithm 3.36 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot :: Integer
-> Integer -- ^ prime p
-> (Integer, Integer)
sqroot a p =
let r = expSafe a ((p + 1) `div` 4) p
in (r, -r)
-- | Square roots modulo n given its prime factors p and q (both congruent 3 mod 4)
-- Value a must be a quadratic residue of both modulo p and modulo q (i.e. jacobi symbols (a/p) = (a/q) = 1).
--
-- See algorithm 3.44 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot' :: Integer
-> Integer -- ^ prime p
-> Integer -- ^ prime q
-> Integer -- ^ c such that c*p + d*q = 1
-> Integer -- ^ d such that c*p + d*q = 1
-> Integer -- ^ n = p*q
-> (Integer, Integer, Integer, Integer)
sqroot' a p q c d n =
let (r, _) = sqroot a p
(s, _) = sqroot a q
x = (r*d*q + s*c*p) `mod` n
y = (r*d*q - s*c*p) `mod` n
in (x, (-x) `mod` n, y, (-y) `mod` n)

View File

@ -1,101 +0,0 @@
-- |
-- Module : Crypto.PubKey.Rabin.Modified
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Modified-Rabin public-key digital signature algorithm.
-- See algorithm 11.30 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Modified
( PublicKey(..)
, PrivateKey(..)
, generate
, sign
, verify
) where
import Data.ByteString
import Data.Data
import Crypto.Hash
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (os2ip)
import Crypto.PubKey.Rabin.Types
import Crypto.Random.Types
-- | Represent a Modified-Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data)
-- | Represent a Modified-Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_d :: Integer
} deriving (Show, Read, Eq, Data)
-- | Generate a pair of (private, public) key of size in bytes.
-- Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 8 == 3) (\q -> q `mod` 8 == 7)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
d = (n - p - q + 5) `div` 8
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_d = d }
in (publicKey, privateKey)
-- | Sign message using hash algorithm and private key.
sign :: HashAlgorithm hash
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
sign pk hashAlg m =
let d = private_d pk
n = public_n $ private_pub pk
h = os2ip $ hashWith hashAlg m
limit = (n - 6) `div` 16
in if h > limit then Left MessageTooLong
else let h' = 16*h + 6
in case jacobi h' n of
Just 1 -> Right $ expSafe h' d n
Just (-1) -> Right $ expSafe (h' `div` 2) d n
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
verify :: HashAlgorithm hash
=> PublicKey -- ^ public key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Integer -- ^ signature
-> Bool
verify pk hashAlg m s =
let n = public_n pk
h = os2ip $ hashWith hashAlg m
s' = expSafe s 2 n
s'' = case s' `mod` 8 of
6 -> s'
3 -> 2*s'
7 -> n - s'
2 -> 2*(n - s')
_ -> 0
in case s'' `mod` 16 of
6 -> let h' = (s'' - 6) `div` 16
in h' == h
_ -> False

View File

@ -1,100 +0,0 @@
-- |
-- Module : Crypto.PubKey.Rabin.OAEP
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- OAEP padding scheme.
-- See <http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding>.
--
module Crypto.PubKey.Rabin.OAEP
( OAEPParams(..)
, defaultOAEPParams
, pad
, unpad
) where
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Bits (xor)
import Crypto.Hash
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray)
import qualified Crypto.Internal.ByteArray as B (convert)
import Crypto.PubKey.MaskGenFunction
import Crypto.PubKey.Internal (and')
import Crypto.PubKey.Rabin.Types
-- | Parameters for OAEP padding.
data OAEPParams hash seed output = OAEPParams
{ oaepHash :: hash -- ^ hash function to use
, oaepMaskGenAlg :: MaskGenAlgorithm seed output -- ^ mask Gen algorithm to use
, oaepLabel :: Maybe ByteString -- ^ optional label prepended to message
}
-- | Default Params with a specified hash function.
defaultOAEPParams :: (ByteArrayAccess seed, ByteArray output, HashAlgorithm hash)
=> hash
-> OAEPParams hash seed output
defaultOAEPParams hashAlg =
OAEPParams { oaepHash = hashAlg
, oaepMaskGenAlg = mgf1 hashAlg
, oaepLabel = Nothing
}
-- | Pad a message using OAEP.
pad :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP params to use
-> Int -- ^ size of public key in bytes
-> ByteString -- ^ Message pad
-> Either Error ByteString
pad seed oaep k msg
| k < 2*hashLen+2 = Left InvalidParameters
| B.length seed /= hashLen = Left InvalidParameters
| mLen > k - 2*hashLen-2 = Left MessageTooLong
| otherwise = Right em
where -- parameters
mLen = B.length msg
mgf = oaepMaskGenAlg oaep
labelHash = hashWith (oaepHash oaep) (maybe B.empty id $ oaepLabel oaep)
hashLen = hashDigestSize (oaepHash oaep)
-- put fields
ps = B.replicate (k - mLen - 2*hashLen - 2) 0
db = B.concat [B.convert labelHash, ps, B.singleton 0x1, msg]
dbmask = mgf seed (k - hashLen - 1)
maskedDB = B.pack $ B.zipWith xor db dbmask
seedMask = mgf maskedDB hashLen
maskedSeed = B.pack $ B.zipWith xor seed seedMask
em = B.concat [B.singleton 0x0, maskedSeed, maskedDB]
-- | Un-pad a OAEP encoded message.
unpad :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP params to use
-> Int -- ^ size of public key in bytes
-> ByteString -- ^ encoded message (not encrypted)
-> Either Error ByteString
unpad oaep k em
| paddingSuccess = Right msg
| otherwise = Left MessageNotRecognized
where -- parameters
mgf = oaepMaskGenAlg oaep
labelHash = B.convert $ hashWith (oaepHash oaep) (maybe B.empty id $ oaepLabel oaep)
hashLen = hashDigestSize (oaepHash oaep)
-- getting em's fields
(pb, em0) = B.splitAt 1 em
(maskedSeed, maskedDB) = B.splitAt hashLen em0
seedMask = mgf maskedDB hashLen
seed = B.pack $ B.zipWith xor maskedSeed seedMask
dbmask = mgf seed (k - hashLen - 1)
db = B.pack $ B.zipWith xor maskedDB dbmask
-- getting db's fields
(labelHash', db1) = B.splitAt hashLen db
(_, db2) = B.break (/= 0) db1
(ps1, msg) = B.splitAt 1 db2
paddingSuccess = and' [ labelHash' == labelHash -- no need for constant eq
, ps1 == B.replicate 1 0x1
, pb == B.replicate 1 0x0
]

View File

@ -1,166 +0,0 @@
-- |
-- Module : Crypto.PubKey.Rabin.RW
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Rabin-Williams cryptosystem for public-key encryption and digital signature.
-- See pages 323 - 324 in "Computational Number Theory and Modern Cryptography" by Song Y. Yan.
-- Also inspired by https://github.com/vanilala/vncrypt/blob/master/vncrypt/vnrw_gmp.c.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.RW
( PublicKey(..)
, PrivateKey(..)
, generate
, encrypt
, encryptWithSeed
, decrypt
, sign
, verify
) where
import Data.ByteString
import Data.Data
import Crypto.Hash
import Crypto.Number.Basic (numBytes)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (i2osp, i2ospOf_, os2ip)
import Crypto.PubKey.Rabin.OAEP
import Crypto.PubKey.Rabin.Types
import Crypto.Random.Types
-- | Represent a Rabin-Williams public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data)
-- | Represent a Rabin-Williams private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_d :: Integer
} deriving (Show, Read, Eq, Data)
-- | Generate a pair of (private, public) key of size in bytes.
-- Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 8 == 3) (\q -> q `mod` 8 == 7)
return (generateKeys p q)
where
generateKeys p q =
let n = p*q
d = ((p - 1)*(q - 1) `div` 4 + 1) `div` 2
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_d = d }
in (publicKey, privateKey)
-- | Encrypt plaintext using public key an a predefined OAEP seed.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
encryptWithSeed :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP padding
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> Either Error ByteString
encryptWithSeed seed oaep pk m =
let n = public_n pk
k = numBytes n
in do
m' <- pad seed oaep k m
m'' <- ep1 n $ os2ip m'
return $ i2osp $ ep2 n m''
-- | Encrypt plaintext using public key.
encrypt :: (HashAlgorithm hash, MonadRandom m)
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> m (Either Error ByteString)
encrypt oaep pk m = do
seed <- getRandomBytes hashLen
return $ encryptWithSeed seed oaep pk m
where
hashLen = hashDigestSize (oaepHash oaep)
-- | Decrypt ciphertext using private key.
decrypt :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PrivateKey -- ^ private key
-> ByteString -- ^ ciphertext
-> Maybe ByteString
decrypt oaep pk c =
let d = private_d pk
n = public_n $ private_pub pk
k = numBytes n
c' = i2ospOf_ k $ dp2 n $ dp1 d n $ os2ip c
in case unpad oaep k c' of
Left _ -> Nothing
Right p -> Just p
-- | Sign message using hash algorithm and private key.
sign :: HashAlgorithm hash
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
sign pk hashAlg m =
let d = private_d pk
n = public_n $ private_pub pk
in do
m' <- ep1 n $ os2ip $ hashWith hashAlg m
return $ dp1 d n m'
-- | Verify signature using hash algorithm and public key.
verify :: HashAlgorithm hash
=> PublicKey -- ^ public key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Integer -- ^ signature
-> Bool
verify pk hashAlg m s =
let n = public_n pk
h = os2ip $ hashWith hashAlg m
h' = dp2 n $ ep2 n s
in h' == h
-- | Encryption primitive 1
ep1 :: Integer -> Integer -> Either Error Integer
ep1 n m =
let m' = 2*m + 1
m'' = 2*m'
m''' = 2*m''
in case jacobi m' n of
Just (-1) | m'' < n -> Right m''
Just 1 | m''' < n -> Right m'''
_ -> Left InvalidParameters
-- | Encryption primitive 2
ep2 :: Integer -> Integer -> Integer
ep2 n m = expSafe m 2 n
-- | Decryption primitive 1
dp1 :: Integer -> Integer -> Integer -> Integer
dp1 d n c = expSafe c d n
-- | Decryption primitive 2
dp2 :: Integer -> Integer -> Integer
dp2 n c = let c' = c `div` 2
c'' = (n - c) `div` 2
in case c `mod` 4 of
0 -> ((c' `div` 2 - 1) `div` 2)
1 -> ((c'' `div` 2 - 1) `div` 2)
2 -> ((c' - 1) `div` 2)
_ -> ((c'' - 1) `div` 2)

Some files were not shown because too many files have changed in this diff Show More