re-add the primitives to generate primes and test for prime.

This commit is contained in:
Vincent Hanquez 2015-03-29 10:55:46 +01:00
parent d9b16a529e
commit c3d9570881

View File

@ -1,3 +1,10 @@
-- |
-- Module : Crypto.Number.Prime
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
#ifndef MIN_VERSION_integer_gmp
@ -6,31 +13,25 @@
#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE MagicHash #-}
#endif
-- |
-- Module : Crypto.Number.Prime
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
module Crypto.Number.Prime
(
{-
generatePrime
generatePrime
, generateSafePrime
, isProbablyPrime
, findPrimeFrom
, findPrimeFromWith
, primalityTestMillerRabin
-}
primalityTestNaive
, primalityTestNaive
, primalityTestFermat
, isCoprime
) where
import Control.Applicative
import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde_binary)
import Crypto.Number.ModArithmetic (exponantiation)
import Crypto.Random.Types
#if MIN_VERSION_integer_gmp(0,5,1)
import GHC.Integer.GMP.Internals
@ -39,101 +40,103 @@ import GHC.Base
import Data.Bits
#endif
{-
-- | returns if the number is probably prime.
-- first a list of small primes are implicitely tested for divisibility,
-- then a fermat primality test is used with arbitrary numbers and
-- then the Miller Rabin algorithm is used with an accuracy of 30 recursions
isProbablyPrime :: CPRG g => g -> Integer -> (Bool, g)
isProbablyPrime rng !n
| any (\p -> p `divides` n) (filter (< n) firstPrimes) = (False, rng)
| primalityTestFermat 50 (n`div`2) n = primalityTestMillerRabin rng 30 n
| otherwise = (False, rng)
isProbablyPrime :: MonadRandom m => Integer -> m Bool
isProbablyPrime !n
| any (\p -> p `divides` n) (filter (< n) firstPrimes) = return False
| primalityTestFermat 50 (n`div`2) n = primalityTestMillerRabin 30 n
| otherwise = return False
-- | generate a prime number of the required bitsize
generatePrime :: CPRG g => g -> Int -> (Integer, g)
generatePrime rng bits =
let (sp, rng') = generateOfSize rng bits
in findPrimeFrom rng' sp
generatePrime :: MonadRandom m => Int -> m Integer
generatePrime bits = do
sp <- generateOfSize bits
findPrimeFrom sp
-- | generate a prime number of the form 2p+1 where p is also prime.
-- it is also knowed as a Sophie Germaine prime or safe prime.
--
-- The number of safe prime is significantly smaller to the number of prime,
-- as such it shouldn't be used if this number is supposed to be kept safe.
generateSafePrime :: CPRG g => g -> Int -> (Integer, g)
generateSafePrime rng bits =
let (sp, rng') = generateOfSize rng bits
(p, rng'') = findPrimeFromWith rng' (\g i -> isProbablyPrime g (2*i+1)) (sp `div` 2)
in (2*p+1, rng'')
generateSafePrime :: MonadRandom m => Int -> m Integer
generateSafePrime bits = do
sp <- generateOfSize bits
p <- findPrimeFromWith (\i -> isProbablyPrime (2*i+1)) (sp `div` 2)
return (2*p+1)
-- | find a prime from a starting point where the property hold.
findPrimeFromWith :: CPRG g => g -> (g -> Integer -> (Bool,g)) -> Integer -> (Integer, g)
findPrimeFromWith rng prop !n
| even n = findPrimeFromWith rng prop (n+1)
| otherwise = case isProbablyPrime rng n of
(False, rng') -> findPrimeFromWith rng' prop (n+2)
(True, rng') ->
case prop rng' n of
(False, rng'') -> findPrimeFromWith rng'' prop (n+2)
(True, rng'') -> (n, rng'')
findPrimeFromWith :: MonadRandom m => (Integer -> m Bool) -> Integer -> m Integer
findPrimeFromWith prop !n
| even n = findPrimeFromWith prop (n+1)
| otherwise = do
primed <- isProbablyPrime n
if not primed
then findPrimeFromWith prop (n+2)
else do
validate <- prop n
if validate
then return n
else findPrimeFromWith prop (n+2)
-- | find a prime from a starting point with no specific property.
findPrimeFrom :: CPRG g => g -> Integer -> (Integer, g)
findPrimeFrom rng n =
findPrimeFrom :: MonadRandom m => Integer -> m Integer
findPrimeFrom n =
#if MIN_VERSION_integer_gmp(0,5,1)
(nextPrimeInteger n, rng)
return $ nextPrimeInteger n
#else
findPrimeFromWith rng (\g _ -> (True, g)) n
findPrimeFromWith (\_ -> return True) n
#endif
-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: CPRG g => g -> Int -> Integer -> (Bool, g)
primalityTestMillerRabin :: MonadRandom m => Int -> Integer -> m Bool
#if MIN_VERSION_integer_gmp(0,5,1)
primalityTestMillerRabin rng (I# tries) !n =
primalityTestMillerRabin (I# tries) !n =
case testPrimeInteger n tries of
0# -> (False, rng)
_ -> (True, rng)
0# -> return False
_ -> return True
#else
primalityTestMillerRabin rng tries !n
primalityTestMillerRabin tries !n
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = (False, rng)
| even n = return False
| tries <= 0 = error "Miller-Rabin tries need to be > 0"
| otherwise = let (witnesses, rng') = generateTries tries rng
in (loop witnesses, rng')
where !nm1 = n-1
!nm2 = n-2
| otherwise = loop <$> generateTries tries
where
!nm1 = n-1
!nm2 = n-2
(!s,!d) = (factorise 0 nm1)
(!s,!d) = (factorise 0 nm1)
generateTries 0 g = ([], g)
generateTries t g = let (v,g') = generateBetween g 2 nm2
(vs,g'') = generateTries (t-1) g'
in (v:vs, g'')
generateTries 0 = return []
generateTries t = do
v <- generateBetween 2 nm2
vs <- generateTries (t-1)
return (v:vs)
-- factorise n-1 into the form 2^s*d
factorise :: Integer -> Integer -> (Integer, Integer)
factorise !si !vi
| vi `testBit` 0 = (si, vi)
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continously, but just once.
expmod = exponantiation
-- factorise n-1 into the form 2^s*d
factorise :: Integer -> Integer -> (Integer, Integer)
factorise !si !vi
| vi `testBit` 0 = (si, vi)
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continously, but just once.
expmod = exponantiation
-- when iteration reach zero, we have a probable prime
loop [] = True
loop (w:ws) = let x = expmod w d n
in if x == (1 :: Integer) || x == nm1
then loop ws
else loop' ws ((x*x) `mod` n) 1
-- when iteration reach zero, we have a probable prime
loop [] = True
loop (w:ws) = let x = expmod w d n
in if x == (1 :: Integer) || x == nm1
then loop ws
else loop' ws ((x*x) `mod` n) 1
-- loop from 1 to s-1. if we reach the end then it's composite
loop' ws !x2 !r
| r == s = False
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
-- loop from 1 to s-1. if we reach the end then it's composite
loop' ws !x2 !r
| r == s = False
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
#endif
-}
{-
n < z -> witness to test