re-add the primitives to generate primes and test for prime.
This commit is contained in:
parent
d9b16a529e
commit
c3d9570881
@ -1,3 +1,10 @@
|
||||
-- |
|
||||
-- Module : Crypto.Number.Prime
|
||||
-- License : BSD-style
|
||||
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
||||
-- Stability : experimental
|
||||
-- Portability : Good
|
||||
|
||||
{-# LANGUAGE CPP #-}
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
#ifndef MIN_VERSION_integer_gmp
|
||||
@ -6,31 +13,25 @@
|
||||
#if MIN_VERSION_integer_gmp(0,5,1)
|
||||
{-# LANGUAGE MagicHash #-}
|
||||
#endif
|
||||
-- |
|
||||
-- Module : Crypto.Number.Prime
|
||||
-- License : BSD-style
|
||||
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
||||
-- Stability : experimental
|
||||
-- Portability : Good
|
||||
|
||||
module Crypto.Number.Prime
|
||||
(
|
||||
{-
|
||||
generatePrime
|
||||
generatePrime
|
||||
, generateSafePrime
|
||||
, isProbablyPrime
|
||||
, findPrimeFrom
|
||||
, findPrimeFromWith
|
||||
, primalityTestMillerRabin
|
||||
-}
|
||||
primalityTestNaive
|
||||
, primalityTestNaive
|
||||
, primalityTestFermat
|
||||
, isCoprime
|
||||
) where
|
||||
|
||||
import Control.Applicative
|
||||
|
||||
import Crypto.Number.Generate
|
||||
import Crypto.Number.Basic (sqrti, gcde_binary)
|
||||
import Crypto.Number.ModArithmetic (exponantiation)
|
||||
import Crypto.Random.Types
|
||||
|
||||
#if MIN_VERSION_integer_gmp(0,5,1)
|
||||
import GHC.Integer.GMP.Internals
|
||||
@ -39,101 +40,103 @@ import GHC.Base
|
||||
import Data.Bits
|
||||
#endif
|
||||
|
||||
{-
|
||||
-- | returns if the number is probably prime.
|
||||
-- first a list of small primes are implicitely tested for divisibility,
|
||||
-- then a fermat primality test is used with arbitrary numbers and
|
||||
-- then the Miller Rabin algorithm is used with an accuracy of 30 recursions
|
||||
isProbablyPrime :: CPRG g => g -> Integer -> (Bool, g)
|
||||
isProbablyPrime rng !n
|
||||
| any (\p -> p `divides` n) (filter (< n) firstPrimes) = (False, rng)
|
||||
| primalityTestFermat 50 (n`div`2) n = primalityTestMillerRabin rng 30 n
|
||||
| otherwise = (False, rng)
|
||||
isProbablyPrime :: MonadRandom m => Integer -> m Bool
|
||||
isProbablyPrime !n
|
||||
| any (\p -> p `divides` n) (filter (< n) firstPrimes) = return False
|
||||
| primalityTestFermat 50 (n`div`2) n = primalityTestMillerRabin 30 n
|
||||
| otherwise = return False
|
||||
|
||||
-- | generate a prime number of the required bitsize
|
||||
generatePrime :: CPRG g => g -> Int -> (Integer, g)
|
||||
generatePrime rng bits =
|
||||
let (sp, rng') = generateOfSize rng bits
|
||||
in findPrimeFrom rng' sp
|
||||
generatePrime :: MonadRandom m => Int -> m Integer
|
||||
generatePrime bits = do
|
||||
sp <- generateOfSize bits
|
||||
findPrimeFrom sp
|
||||
|
||||
-- | generate a prime number of the form 2p+1 where p is also prime.
|
||||
-- it is also knowed as a Sophie Germaine prime or safe prime.
|
||||
--
|
||||
-- The number of safe prime is significantly smaller to the number of prime,
|
||||
-- as such it shouldn't be used if this number is supposed to be kept safe.
|
||||
generateSafePrime :: CPRG g => g -> Int -> (Integer, g)
|
||||
generateSafePrime rng bits =
|
||||
let (sp, rng') = generateOfSize rng bits
|
||||
(p, rng'') = findPrimeFromWith rng' (\g i -> isProbablyPrime g (2*i+1)) (sp `div` 2)
|
||||
in (2*p+1, rng'')
|
||||
generateSafePrime :: MonadRandom m => Int -> m Integer
|
||||
generateSafePrime bits = do
|
||||
sp <- generateOfSize bits
|
||||
p <- findPrimeFromWith (\i -> isProbablyPrime (2*i+1)) (sp `div` 2)
|
||||
return (2*p+1)
|
||||
|
||||
-- | find a prime from a starting point where the property hold.
|
||||
findPrimeFromWith :: CPRG g => g -> (g -> Integer -> (Bool,g)) -> Integer -> (Integer, g)
|
||||
findPrimeFromWith rng prop !n
|
||||
| even n = findPrimeFromWith rng prop (n+1)
|
||||
| otherwise = case isProbablyPrime rng n of
|
||||
(False, rng') -> findPrimeFromWith rng' prop (n+2)
|
||||
(True, rng') ->
|
||||
case prop rng' n of
|
||||
(False, rng'') -> findPrimeFromWith rng'' prop (n+2)
|
||||
(True, rng'') -> (n, rng'')
|
||||
findPrimeFromWith :: MonadRandom m => (Integer -> m Bool) -> Integer -> m Integer
|
||||
findPrimeFromWith prop !n
|
||||
| even n = findPrimeFromWith prop (n+1)
|
||||
| otherwise = do
|
||||
primed <- isProbablyPrime n
|
||||
if not primed
|
||||
then findPrimeFromWith prop (n+2)
|
||||
else do
|
||||
validate <- prop n
|
||||
if validate
|
||||
then return n
|
||||
else findPrimeFromWith prop (n+2)
|
||||
|
||||
-- | find a prime from a starting point with no specific property.
|
||||
findPrimeFrom :: CPRG g => g -> Integer -> (Integer, g)
|
||||
findPrimeFrom rng n =
|
||||
findPrimeFrom :: MonadRandom m => Integer -> m Integer
|
||||
findPrimeFrom n =
|
||||
#if MIN_VERSION_integer_gmp(0,5,1)
|
||||
(nextPrimeInteger n, rng)
|
||||
return $ nextPrimeInteger n
|
||||
#else
|
||||
findPrimeFromWith rng (\g _ -> (True, g)) n
|
||||
findPrimeFromWith (\_ -> return True) n
|
||||
#endif
|
||||
|
||||
-- | Miller Rabin algorithm return if the number is probably prime or composite.
|
||||
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
|
||||
primalityTestMillerRabin :: CPRG g => g -> Int -> Integer -> (Bool, g)
|
||||
primalityTestMillerRabin :: MonadRandom m => Int -> Integer -> m Bool
|
||||
#if MIN_VERSION_integer_gmp(0,5,1)
|
||||
primalityTestMillerRabin rng (I# tries) !n =
|
||||
primalityTestMillerRabin (I# tries) !n =
|
||||
case testPrimeInteger n tries of
|
||||
0# -> (False, rng)
|
||||
_ -> (True, rng)
|
||||
0# -> return False
|
||||
_ -> return True
|
||||
#else
|
||||
primalityTestMillerRabin rng tries !n
|
||||
primalityTestMillerRabin tries !n
|
||||
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
|
||||
| even n = (False, rng)
|
||||
| even n = return False
|
||||
| tries <= 0 = error "Miller-Rabin tries need to be > 0"
|
||||
| otherwise = let (witnesses, rng') = generateTries tries rng
|
||||
in (loop witnesses, rng')
|
||||
where !nm1 = n-1
|
||||
!nm2 = n-2
|
||||
| otherwise = loop <$> generateTries tries
|
||||
where
|
||||
!nm1 = n-1
|
||||
!nm2 = n-2
|
||||
|
||||
(!s,!d) = (factorise 0 nm1)
|
||||
(!s,!d) = (factorise 0 nm1)
|
||||
|
||||
generateTries 0 g = ([], g)
|
||||
generateTries t g = let (v,g') = generateBetween g 2 nm2
|
||||
(vs,g'') = generateTries (t-1) g'
|
||||
in (v:vs, g'')
|
||||
generateTries 0 = return []
|
||||
generateTries t = do
|
||||
v <- generateBetween 2 nm2
|
||||
vs <- generateTries (t-1)
|
||||
return (v:vs)
|
||||
|
||||
-- factorise n-1 into the form 2^s*d
|
||||
factorise :: Integer -> Integer -> (Integer, Integer)
|
||||
factorise !si !vi
|
||||
| vi `testBit` 0 = (si, vi)
|
||||
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continously, but just once.
|
||||
expmod = exponantiation
|
||||
-- factorise n-1 into the form 2^s*d
|
||||
factorise :: Integer -> Integer -> (Integer, Integer)
|
||||
factorise !si !vi
|
||||
| vi `testBit` 0 = (si, vi)
|
||||
| otherwise = factorise (si+1) (vi `shiftR` 1) -- probably faster to not shift v continously, but just once.
|
||||
expmod = exponantiation
|
||||
|
||||
-- when iteration reach zero, we have a probable prime
|
||||
loop [] = True
|
||||
loop (w:ws) = let x = expmod w d n
|
||||
in if x == (1 :: Integer) || x == nm1
|
||||
then loop ws
|
||||
else loop' ws ((x*x) `mod` n) 1
|
||||
-- when iteration reach zero, we have a probable prime
|
||||
loop [] = True
|
||||
loop (w:ws) = let x = expmod w d n
|
||||
in if x == (1 :: Integer) || x == nm1
|
||||
then loop ws
|
||||
else loop' ws ((x*x) `mod` n) 1
|
||||
|
||||
-- loop from 1 to s-1. if we reach the end then it's composite
|
||||
loop' ws !x2 !r
|
||||
| r == s = False
|
||||
| x2 == 1 = False
|
||||
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
|
||||
| otherwise = loop ws
|
||||
-- loop from 1 to s-1. if we reach the end then it's composite
|
||||
loop' ws !x2 !r
|
||||
| r == s = False
|
||||
| x2 == 1 = False
|
||||
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
|
||||
| otherwise = loop ws
|
||||
#endif
|
||||
-}
|
||||
|
||||
{-
|
||||
n < z -> witness to test
|
||||
|
||||
Loading…
Reference in New Issue
Block a user