Merge pull request #247 from crodriguezvega/master

Add Rabin (and variants) cryptosystem
This commit is contained in:
Vincent Hanquez 2018-12-18 21:44:44 +00:00 committed by GitHub
commit 7fc7acb38b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 843 additions and 0 deletions

View File

@ -13,8 +13,11 @@ module Crypto.Number.Basic
, log2
, numBits
, numBytes
, asPowerOf2AndOdd
) where
import Data.Bits
import Crypto.Number.Compat
-- | @sqrti@ returns two integers @(l,b)@ so that @l <= sqrt i <= b@.
@ -98,3 +101,16 @@ numBits n = gmpSizeInBits n `onGmpUnsupported` (if n == 0 then 1 else computeBit
-- | Compute the number of bytes for an integer
numBytes :: Integer -> Int
numBytes n = gmpSizeInBytes n `onGmpUnsupported` ((numBits n + 7) `div` 8)
-- | Express an integer as an odd number and a power of 2
asPowerOf2AndOdd :: Integer -> (Int, Integer)
asPowerOf2AndOdd a
| a == 0 = (0, 0)
| odd a = (0, a)
| a < 0 = let (e, a1) = asPowerOf2AndOdd $ abs a in (e, -a1)
| isPowerOf2 a = (log2 a, 1)
| otherwise = loop a 0
where
isPowerOf2 n = (n /= 0) && ((n .&. (n - 1)) == 0)
loop n pw = if n `mod` 2 == 0 then loop (n `div` 2) (pw + 1)
else (pw, n)

View File

@ -15,6 +15,7 @@ module Crypto.Number.ModArithmetic
-- * Inverse computing
, inverse
, inverseCoprimes
, jacobi
) where
import Control.Exception (throw, Exception)
@ -94,3 +95,29 @@ inverseCoprimes g m =
case inverse g m of
Nothing -> throw CoprimesAssertionError
Just i -> i
-- | Computes the Jacobi symbol (a/n).
-- 0 ≤ a < n; n ≥ 3 and odd.
--
-- The Legendre and Jacobi symbols are indistinguishable exactly when the
-- lower argument is an odd prime, in which case they have the same value.
--
-- See algorithm 2.149 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
jacobi :: Integer -> Integer -> Maybe Integer
jacobi a n
| n < 3 || even n = Nothing
| a == 0 || a == 1 = Just a
| n <= a = jacobi (a `mod` n) n
| a < 0 =
let b = if n `mod` 4 == 1 then 1 else -1
in fmap (*b) (jacobi (-a) n)
| otherwise =
let (e, a1) = asPowerOf2AndOdd a
nMod8 = n `mod` 8
nMod4 = n `mod` 4
a1Mod4 = a1 `mod` 4
s' = if even e || nMod8 == 1 || nMod8 == 7 then 1 else -1
s = if nMod4 == 3 && a1Mod4 == 3 then -s' else s'
n1 = n `mod` a1
in if a1 == 1 then Just s
else fmap (*s) (jacobi n1 a1)

View File

@ -0,0 +1,231 @@
-- |
-- Module : Crypto.PubKey.Rabin.Basic
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Rabin cryptosystem for public-key cryptography and digital signature.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Basic
( PublicKey(..)
, PrivateKey(..)
, Signature(..)
, generate
, encrypt
, encryptWithSeed
, decrypt
, sign
, signWith
, verify
) where
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Data
import Data.Either (rights)
import Crypto.Hash
import Crypto.Number.Basic (gcde, numBytes, asPowerOf2AndOdd)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Prime (isProbablyPrime)
import Crypto.Number.Serialize (i2osp, i2ospOf_, os2ip)
import Crypto.PubKey.Rabin.OAEP
import Crypto.PubKey.Rabin.Types
import Crypto.Random (MonadRandom, getRandomBytes)
-- | Represent a Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data, Typeable)
-- | Represent a Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_a :: Integer
, private_b :: Integer
} deriving (Show, Read, Eq, Data, Typeable)
-- | Rabin Signature.
data Signature = Signature (Integer, Integer) deriving (Show, Read, Eq, Data, Typeable)
-- | Generate a pair of (private, public) key of size in bytes.
-- Primes p and q are both congruent 3 mod 4.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 4 == 3) (\q -> q `mod` 4 == 3)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
(a, b, _) = gcde p q
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_a = a
, private_b = b }
in (publicKey, privateKey)
-- | Encrypt plaintext using public key an a predefined OAEP seed.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
encryptWithSeed :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP padding
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> Either Error ByteString
encryptWithSeed seed oaep pk m =
let n = public_n pk
k = numBytes n
in do
m' <- pad seed oaep k m
let m'' = os2ip m'
return $ i2osp $ expSafe m'' 2 n
-- | Encrypt plaintext using public key.
encrypt :: (HashAlgorithm hash, MonadRandom m)
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> m (Either Error ByteString)
encrypt oaep pk m = do
seed <- getRandomBytes hashLen
return $ encryptWithSeed seed oaep pk m
where
hashLen = hashDigestSize (oaepHash oaep)
-- | Decrypt ciphertext using private key.
--
-- See algorithm 8.12 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
decrypt :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PrivateKey -- ^ private key
-> ByteString -- ^ ciphertext
-> Maybe ByteString
decrypt oaep pk c =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
k = numBytes n
c' = os2ip c
solutions = rights $ toList $ mapTuple (unpad oaep k . i2ospOf_ k) $ sqroot' c' p q a b n
in if length solutions /= 1 then Nothing
else Just $ head solutions
where toList (w, x, y, z) = w:x:y:z:[]
mapTuple f (w, x, y, z) = (f w, f x, f y, f z)
-- | Sign message using padding, hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
signWith :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Signature
signWith padding pk hashAlg m = do
h <- calculateHash padding pk hashAlg m
signature <- calculateSignature h
return signature
where
calculateSignature h =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
in if h >= n then Left MessageTooLong
else let (r, _, _, _) = sqroot' h p q a b n
in Right $ Signature (os2ip padding, r)
-- | Sign message using hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
sign :: (MonadRandom m, HashAlgorithm hash)
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> m (Either Error Signature)
sign pk hashAlg m = do
padding <- findPadding
return $ signWith padding pk hashAlg m
where
findPadding = do
padding <- getRandomBytes 8
case calculateHash padding pk hashAlg m of
Right _ -> return padding
_ -> findPadding
-- | Calculate hash of message and padding.
-- If the padding is valid, then the result of the hash operation is returned, otherwise an error.
calculateHash :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
calculateHash padding pk hashAlg m =
let p = private_p pk
q = private_q pk
h = os2ip $ hashWith hashAlg $ B.append padding m
in case (jacobi (h `mod` p) p, jacobi (h `mod` q) q) of
(Just 1, Just 1) -> Right h
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
verify :: HashAlgorithm hash
=> PublicKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Signature -- ^ signature
-> Bool
verify pk hashAlg m (Signature (padding, s)) =
let n = public_n pk
p = i2osp padding
h = os2ip $ hashWith hashAlg $ B.append p m
h' = expSafe s 2 n
in h' == h
-- | Square roots modulo prime p where p is congruent 3 mod 4
-- Value a must be a quadratic residue modulo p (i.e. jacobi symbol (a/n) = 1).
--
-- See algorithm 3.36 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot :: Integer
-> Integer -- ^ prime p
-> (Integer, Integer)
sqroot a p =
let r = expSafe a ((p + 1) `div` 4) p
in (r, -r)
-- | Square roots modulo n given its prime factors p and q (both congruent 3 mod 4)
-- Value a must be a quadratic residue of both modulo p and modulo q (i.e. jacobi symbols (a/p) = (a/q) = 1).
--
-- See algorithm 3.44 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot' :: Integer
-> Integer -- ^ prime p
-> Integer -- ^ prime q
-> Integer -- ^ c such that c*p + d*q = 1
-> Integer -- ^ d such that c*p + d*q = 1
-> Integer -- ^ n = p*q
-> (Integer, Integer, Integer, Integer)
sqroot' a p q c d n =
let (r, _) = sqroot a p
(s, _) = sqroot a q
x = (r*d*q + s*c*p) `mod` n
y = (r*d*q - s*c*p) `mod` n
in (x, (-x) `mod` n, y, (-y) `mod` n)

View File

@ -0,0 +1,103 @@
-- |
-- Module : Crypto.PubKey.Rabin.Modified
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Modified-Rabin public-key digital signature algorithm.
-- See algorithm 11.30 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Modified
( PublicKey(..)
, PrivateKey(..)
, generate
, sign
, verify
) where
import Data.ByteString
import qualified Data.ByteString as B
import Data.Data
import Crypto.Hash
import Crypto.Number.Basic (gcde)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (i2osp, os2ip)
import Crypto.PubKey.Rabin.Types
import Crypto.Random.Types
-- | Represent a Modified-Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data, Typeable)
-- | Represent a Modified-Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_d :: Integer
} deriving (Show, Read, Eq, Data, Typeable)
-- | Generate a pair of (private, public) key of size in bytes.
-- Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 8 == 3) (\q -> q `mod` 8 == 7)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
d = (n - p - q + 5) `div` 8
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_d = d }
in (publicKey, privateKey)
-- | Sign message using hash algorithm and private key.
sign :: HashAlgorithm hash
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
sign pk hashAlg m =
let d = private_d pk
n = public_n $ private_pub pk
h = os2ip $ hashWith hashAlg m
limit = (n - 6) `div` 16
in if h > limit then Left MessageTooLong
else let h' = 16*h + 6
in case jacobi h' n of
Just 1 -> Right $ expSafe h' d n
Just (-1) -> Right $ expSafe (h' `div` 2) d n
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
verify :: HashAlgorithm hash
=> PublicKey -- ^ public key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Integer -- ^ signature
-> Bool
verify pk hashAlg m s =
let n = public_n pk
h = os2ip $ hashWith hashAlg m
s' = expSafe s 2 n
s'' = case s' `mod` 8 of
6 -> s'
3 -> 2*s'
7 -> n - s'
2 -> 2*(n - s')
_ -> 0
in case s'' `mod` 16 of
6 -> let h' = (s'' - 6) `div` 16
in h' == h
_ -> False

100
Crypto/PubKey/Rabin/OAEP.hs Normal file
View File

@ -0,0 +1,100 @@
-- |
-- Module : Crypto.PubKey.Rabin.OAEP
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- OAEP padding scheme.
-- See <http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding>.
--
module Crypto.PubKey.Rabin.OAEP
( OAEPParams(..)
, defaultOAEPParams
, pad
, unpad
) where
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Bits (xor)
import Crypto.Hash
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray)
import qualified Crypto.Internal.ByteArray as B (convert)
import Crypto.PubKey.MaskGenFunction
import Crypto.PubKey.Internal (and')
import Crypto.PubKey.Rabin.Types
-- | Parameters for OAEP padding.
data OAEPParams hash seed output = OAEPParams
{ oaepHash :: hash -- ^ hash function to use
, oaepMaskGenAlg :: MaskGenAlgorithm seed output -- ^ mask Gen algorithm to use
, oaepLabel :: Maybe ByteString -- ^ optional label prepended to message
}
-- | Default Params with a specified hash function.
defaultOAEPParams :: (ByteArrayAccess seed, ByteArray output, HashAlgorithm hash)
=> hash
-> OAEPParams hash seed output
defaultOAEPParams hashAlg =
OAEPParams { oaepHash = hashAlg
, oaepMaskGenAlg = mgf1 hashAlg
, oaepLabel = Nothing
}
-- | Pad a message using OAEP.
pad :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP params to use
-> Int -- ^ size of public key in bytes
-> ByteString -- ^ Message pad
-> Either Error ByteString
pad seed oaep k msg
| k < 2*hashLen+2 = Left InvalidParameters
| B.length seed /= hashLen = Left InvalidParameters
| mLen > k - 2*hashLen-2 = Left MessageTooLong
| otherwise = Right em
where -- parameters
mLen = B.length msg
mgf = oaepMaskGenAlg oaep
labelHash = hashWith (oaepHash oaep) (maybe B.empty id $ oaepLabel oaep)
hashLen = hashDigestSize (oaepHash oaep)
-- put fields
ps = B.replicate (k - mLen - 2*hashLen - 2) 0
db = B.concat [B.convert labelHash, ps, B.singleton 0x1, msg]
dbmask = mgf seed (k - hashLen - 1)
maskedDB = B.pack $ B.zipWith xor db dbmask
seedMask = mgf maskedDB hashLen
maskedSeed = B.pack $ B.zipWith xor seed seedMask
em = B.concat [B.singleton 0x0, maskedSeed, maskedDB]
-- | Un-pad a OAEP encoded message.
unpad :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP params to use
-> Int -- ^ size of public key in bytes
-> ByteString -- ^ encoded message (not encrypted)
-> Either Error ByteString
unpad oaep k em
| paddingSuccess = Right msg
| otherwise = Left MessageNotRecognized
where -- parameters
mgf = oaepMaskGenAlg oaep
labelHash = B.convert $ hashWith (oaepHash oaep) (maybe B.empty id $ oaepLabel oaep)
hashLen = hashDigestSize (oaepHash oaep)
-- getting em's fields
(pb, em0) = B.splitAt 1 em
(maskedSeed, maskedDB) = B.splitAt hashLen em0
seedMask = mgf maskedDB hashLen
seed = B.pack $ B.zipWith xor maskedSeed seedMask
dbmask = mgf seed (k - hashLen - 1)
db = B.pack $ B.zipWith xor maskedDB dbmask
-- getting db's fields
(labelHash', db1) = B.splitAt hashLen db
(_, db2) = B.break (/= 0) db1
(ps1, msg) = B.splitAt 1 db2
paddingSuccess = and' [ labelHash' == labelHash -- no need for constant eq
, ps1 == B.replicate 1 0x1
, pb == B.replicate 1 0x0
]

167
Crypto/PubKey/Rabin/RW.hs Normal file
View File

@ -0,0 +1,167 @@
-- |
-- Module : Crypto.PubKey.Rabin.RW
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Rabin-Williams cryptosystem for public-key encryption and digital signature.
-- See pages 323 - 324 in "Computational Number Theory and Modern Cryptography" by Song Y. Yan.
-- Also inspired by https://github.com/vanilala/vncrypt/blob/master/vncrypt/vnrw_gmp.c.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.RW
( PublicKey(..)
, PrivateKey(..)
, generate
, encrypt
, encryptWithSeed
, decrypt
, sign
, verify
) where
import Data.ByteString
import qualified Data.ByteString as B
import Data.Data
import Crypto.Hash
import Crypto.Number.Basic (numBytes, gcde)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (i2osp, i2ospOf_, os2ip)
import Crypto.PubKey.Rabin.OAEP
import Crypto.PubKey.Rabin.Types
import Crypto.Random.Types
-- | Represent a Rabin-Williams public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data, Typeable)
-- | Represent a Rabin-Williams private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_d :: Integer
} deriving (Show, Read, Eq, Data, Typeable)
-- | Generate a pair of (private, public) key of size in bytes.
-- Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 8 == 3) (\q -> q `mod` 8 == 7)
return (generateKeys p q)
where
generateKeys p q =
let n = p*q
d = ((p - 1)*(q - 1) `div` 4 + 1) `div` 2
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_d = d }
in (publicKey, privateKey)
-- | Encrypt plaintext using public key an a predefined OAEP seed.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
encryptWithSeed :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP padding
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> Either Error ByteString
encryptWithSeed seed oaep pk m =
let n = public_n pk
k = numBytes n
in do
m' <- pad seed oaep k m
m'' <- ep1 n $ os2ip m'
return $ i2osp $ ep2 n m''
-- | Encrypt plaintext using public key.
encrypt :: (HashAlgorithm hash, MonadRandom m)
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> m (Either Error ByteString)
encrypt oaep pk m = do
seed <- getRandomBytes hashLen
return $ encryptWithSeed seed oaep pk m
where
hashLen = hashDigestSize (oaepHash oaep)
-- | Decrypt ciphertext using private key.
decrypt :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PrivateKey -- ^ private key
-> ByteString -- ^ ciphertext
-> Maybe ByteString
decrypt oaep pk c =
let d = private_d pk
n = public_n $ private_pub pk
k = numBytes n
c' = i2ospOf_ k $ dp2 n $ dp1 d n $ os2ip c
in case unpad oaep k c' of
Left _ -> Nothing
Right p -> Just p
-- | Sign message using hash algorithm and private key.
sign :: HashAlgorithm hash
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
sign pk hashAlg m =
let d = private_d pk
n = public_n $ private_pub pk
in do
m' <- ep1 n $ os2ip $ hashWith hashAlg m
return $ dp1 d n m'
-- | Verify signature using hash algorithm and public key.
verify :: HashAlgorithm hash
=> PublicKey -- ^ public key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Integer -- ^ signature
-> Bool
verify pk hashAlg m s =
let n = public_n pk
h = os2ip $ hashWith hashAlg m
h' = dp2 n $ ep2 n s
in h' == h
-- | Encryption primitive 1
ep1 :: Integer -> Integer -> Either Error Integer
ep1 n m =
let m' = 2*m + 1
m'' = 2*m'
m''' = 2*m''
in case jacobi m' n of
Just (-1) | m'' < n -> Right m''
Just 1 | m''' < n -> Right m'''
_ -> Left InvalidParameters
-- | Encryption primitive 2
ep2 :: Integer -> Integer -> Integer
ep2 n m = expSafe m 2 n
-- | Decryption primitive 1
dp1 :: Integer -> Integer -> Integer -> Integer
dp1 d n c = expSafe c d n
-- | Decryption primitive 2
dp2 :: Integer -> Integer -> Integer
dp2 n c = let c' = c `div` 2
c'' = (n - c) `div` 2
in case c `mod` 4 of
0 -> ((c' `div` 2 - 1) `div` 2)
1 -> ((c'' `div` 2 - 1) `div` 2)
2 -> ((c' - 1) `div` 2)
_ -> ((c'' - 1) `div` 2)

View File

@ -0,0 +1,43 @@
-- |
-- Module : Crypto.PubKey.Rabin.Types
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
module Crypto.PubKey.Rabin.Types
( Error(..)
, generatePrimes
) where
import Crypto.Number.Basic (numBits)
import Crypto.Number.Prime (generatePrime, findPrimeFromWith)
import Crypto.Random.Types
type PrimeCondition = Integer -> Bool
-- | Error possible during encryption, decryption or signing.
data Error = MessageTooLong -- ^ the message to encrypt is too long
| MessageNotRecognized -- ^ the message decrypted doesn't have a OAEP structure
| InvalidParameters -- ^ some parameters lead to breaking assumptions
deriving (Show, Eq)
-- | Generate primes p & q
generatePrimes :: MonadRandom m
=> Int -- ^ size in bytes
-> PrimeCondition -- ^ condition prime p must satisfy
-> PrimeCondition -- ^ condition prime q must satisfy
-> m (Integer, Integer) -- ^ chosen distinct primes p and q
generatePrimes size pCond qCond =
let pBits = (8*(size `div` 2))
qBits = (8*(size - (size `div` 2)))
in do
p <- generatePrime' pBits pCond
q <- generatePrime' qBits qCond
return (p, q)
where
generatePrime' bits cond = do
pr' <- generatePrime bits
let pr = findPrimeFromWith cond pr'
if numBits pr == bits then return pr
else generatePrime' bits cond

View File

@ -162,6 +162,11 @@ Library
Crypto.PubKey.RSA.PSS
Crypto.PubKey.RSA.OAEP
Crypto.PubKey.RSA.Types
Crypto.PubKey.Rabin.OAEP
Crypto.PubKey.Rabin.Basic
Crypto.PubKey.Rabin.Modified
Crypto.PubKey.Rabin.RW
Crypto.PubKey.Rabin.Types
Crypto.Random
Crypto.Random.Types
Crypto.Random.Entropy
@ -407,6 +412,7 @@ Test-Suite test-cryptonite
KAT_PubKey.PSS
KAT_PubKey.P256
KAT_PubKey.RSA
KAT_PubKey.Rabin
KAT_PubKey
KAT_RC4
KAT_Scrypt

View File

@ -17,6 +17,7 @@ import KAT_PubKey.DSA
import KAT_PubKey.ECC
import KAT_PubKey.ECDSA
import KAT_PubKey.RSA
import KAT_PubKey.Rabin
import Utils
import qualified KAT_PubKey.P256 as P256
@ -43,6 +44,7 @@ tests = testGroup "PubKey"
, eccTests
, ecdsaTests
, P256.tests
, rabinTests
]
--newKats = [ eccKatTests ]

145
tests/KAT_PubKey/Rabin.hs Normal file
View File

@ -0,0 +1,145 @@
{-# LANGUAGE OverloadedStrings #-}
module KAT_PubKey.Rabin (rabinTests) where
import qualified Data.ByteString as B
import Crypto.Hash
import Crypto.Number.Serialize (os2ip)
import qualified Crypto.PubKey.Rabin.Basic as BRabin
import qualified Crypto.PubKey.Rabin.Modified as MRabin
import qualified Crypto.PubKey.Rabin.OAEP as OAEP
import qualified Crypto.PubKey.Rabin.RW as RW
import Imports
basicRabinKey = BRabin.PrivateKey
{ BRabin.private_pub = BRabin.PublicKey
{ BRabin.public_n = 0xc9c4b0df9db989d93df4137fc2de2a9cee2610523f7a450ecbbf252babe98fba2f8e389c3e420c081e18f584c5746ca43f77f6af1fc79161f8bf8fbcb9564779986ecbe656dd16740cb8e399c33ff1dcc679e73c9c98a58c65a8673b7de57290a2d3191cb27e29d627f7ec6e874b1406051ffe9181e4d90d1b487b100ad30685
, BRabin.public_size = 128
}
, BRabin.private_p = 0xe071f231ab5912285a1f8db199795f5efdea4c32f646a3436eaec091ba853a3092216f26b539bbac1fe2ab2e4fbb20aad272a434a1e909bf6d3028aecae2a7b7
, BRabin.private_q = 0xe6229470dc7da58bfcd962f1b3ddcf52304efbfb91d31c8ed84dbae2380c1ad2e338a523b4250863a689b3f262f949bd7a9f1a603c36634bb932dd71bf5daba3
, BRabin.private_a = 0x65956653f711a63b776ce45862d4cd78f1ad7b1f8ed118bb8b5ea5fffd59762da5dc7c5298e236a8e45d5c93477cbc51f214b1cd1a4980eda859c1cb05e55666
, BRabin.private_b = -0x63126dd9c5d6b5215f62012885570e1306b6a47ec1c46553f3b13ceae869149d14544438dbb976800cd62fbb52266f9a6405bc91f192a462c974bc8a6f832e03
}
modifiedRabinKey = MRabin.PrivateKey
{ MRabin.private_pub = MRabin.PublicKey
{ MRabin.public_n = 0x9461a6e7c55cb610f20fd9af5d642404a63332a8d7c4fe7aa559cbcaec691e7216eed5d9322cb6a8619c220a0241b44e0d0a7cefda01fb84e59722b4e842ab5e190d214424bbdfed6d523426fc57a28045dfbb6e8159123077c542c0278ee2daf2d8993e286bf709a10a948da6b13008441581a22233f0ad3d5ebc5858ff7be5
, MRabin.public_size = 128
}
, MRabin.private_p = 0xc401e0ddbe565a8797292389bebb561c35eb019116ba25cc6c865a8d3d7bc599626ddf0bc4f575c22f89144fe99fc3300dd497ec2b7acc0221e729a61756b3f3
, MRabin.private_q = 0xc1cc0e35f23f5086691a18c755881e3fe6937581948b109f47605b45d055e7b352e19ff729dfb33fbecb1d28b115e590449e5e4e228ab1876d889d3d41d87ec7
, MRabin.private_d = 0x128c34dcf8ab96c21e41fb35ebac848094c666551af89fcf54ab39795d8d23ce42dddabb264596d50c33844140483689c1a14f9dfb403f709cb2e4569d08556b9267e6460e84c69beda1defabd0285c4852c288b7ac27b78987bd19da337a6b1c7b123476732d9c0f656cc62a17f70e8fe34516cfa85ce6475bddeae9ffa0926
}
rwKey = RW.PrivateKey
{ RW.private_pub = RW.PublicKey
{ RW.public_n = 0x992db4c84564c68d4ee2fe0903d938b41e83bcac48dfe8f2219ccee2ccbdefda4cbeea9f1c98a515c5f39a458f5ea11bca97102aaa3d9ac69e000093024e7b968359287cdf57bdacff5df1893df3539c7e358f037d49b5c6ae7110ab8117220c73b6265987039c2c97078fccacdd3f5a560aff5076fdc3958c532db28ab9a855
, RW.public_size = 128
}
, RW.private_p = 0xc144dd739c45397d61868ca944a9729a7ad34cf90466c8f5c98a88f5ab5e3288bcfd31d4af1d441d23a756a60abd4cf05c3e0b0053eb150166a327ae31e9347b
, RW.private_q = 0xcae5a381f25a27ae2c359068753118fc384471cd6027e88b8b910306fb940781261089259a3c569546677aebd268704c767a071dbd4f50cb9f15fe448788856f
, RW.private_d = 0x1325b69908ac98d1a9dc5fc1207b271683d07795891bfd1e443399dc5997bdfb4997dd53e39314a2b8be7348b1ebd4237952e2055547b358d3c000126049cf729ee5d4f0ea170b902e343a8ef0831900b963ba07a3176088ab2ab095db449d0052150d6be7b5402f459f17c759f6f043b06a5da64cb86bb910d340f7fa28fdce
}
data EncryptionVector = EncryptionVector
{ seed :: ByteString
, plainText :: ByteString
, cipherText :: ByteString
}
data SignatureVector = SignatureVector
{ message :: ByteString
, padding :: ByteString
, signature :: Integer
}
basicRabinEncryptionVectors =
[ EncryptionVector
{ plainText = "\x75\x0c\x40\x47\xf5\x47\xe8\xe4\x14\x11\x85\x65\x23\x29\x8a\xc9\xba\xe2\x45\xef\xaf\x13\x97\xfb\xe5\x6f\x9d\xd5"
, seed = "\x0c\xc7\x42\xce\x4a\x9b\x7f\x32\xf9\x51\xbc\xb2\x51\xef\xd9\x25\xfe\x4f\xe3\x5f"
, cipherText = "\xaf\xc7\x03\xe3\x9d\x2f\x81\xc6\x3a\x80\x2a\xd1\x44\x26\x3f\x17\x0c\x0a\xe6\x48\x68\x98\x23\x14\x8f\x95\xd2\xce\xbb\xe7\x3f\x49\x34\x76\x1d\x99\x30\x7b\xeb\x84\xe5\x2a\x10\xd2\x1e\x11\x7e\x65\xe8\x88\x24\xc1\x12\xeb\x19\x0d\x97\xcd\x12\x25\x6b\x1f\x9b\x0c\x40\x40\xa3\x47\x00\xb7\x11\xf8\x50\x08\x51\x79\xe8\x1b\xd1\x77\xe0\x99\xa7\xe1\x5c\x63\xda\x29\xc7\xde\x28\x5d\x60\xed\x8e\xb2\x12\xd4\xfe\xb8\x1a\x5d\x17\x65\x80\x62\x6e\x65\x5c\x37\x07\x1c\xfa\xff\xe6\x21\xa5\x9f\xcd\x6a\x6a\xce\xa6\x96\xb2\xc5\x08\xe6"
}
]
basicRabinSignatureVectors =
[ SignatureVector
{ message = "\x75\x0c\x40\x47\xf5\x47\xe8\xe4\x14\x11\x85\x65\x23\x29\x8a\xc9\xba\xe2\x45\xef\xaf\x13\x97\xfb\xe5\x6f\x9d\xd5"
, padding = "\xe9\x87\x17\x15\xa2\xe4\x30\x15"
, signature = 0xac95807bdd03ca975690151d39d23d75e5db2731c4ba30b83c3f3ea74709e4d4e340d7dab952356a76c9b8705b214e28d59f5bdc7c7fdff4e104569e30359b5c65c2dcd5b94db58505cd8b188267121700beebd7edbee492e374514646471b5c3fa252a2580dc7343f455683815d6d7c590dd3bcaa7df41d8b08197ccb183408
}
]
modifiedRabinSignatureVectors =
[ SignatureVector
{ message = "\x75\x0c\x40\x47\xf5\x47\xe8\xe4\x14\x11\x85\x65\x23\x29\x8a\xc9\xba\xe2\x45\xef\xaf\x13\x97\xfb\xe5\x6f\x9d\xd5"
, padding = B.empty -- not used
, signature = 0x278c7c269119218ab7f501ea53a97ab15a3a5a263c6daed8980abec78291e9729e0e3457731cdea8ec31a7566e93d10fc9b2615fe3e54f4533a5506ac24a3bd286e270324e538066f0ddf503f9b5e0c18e18379659834906ebd99c0d31588c66e70fc653bc8865b9239999cbd35704917d8647d1199286c533233e3e03582dd
}
]
rwEncryptionVectors =
[ EncryptionVector
{ plainText = "\x75\x0c\x40\x47\xf5\x47\xe8\xe4\x14\x11\x85\x65\x23\x29\x8a\xc9\xba\xe2\x45\xef\xaf\x13\x97\xfb\xe5\x6f\x9d\xd5"
, seed = "\x0c\xc7\x42\xce\x4a\x9b\x7f\x32\xf9\x51\xbc\xb2\x51\xef\xd9\x25\xfe\x4f\xe3\x5f"
, cipherText = "\x40\xc2\xe3\x36\xac\x46\x72\x8a\xaf\x33\x75\xe1\x27\xd0\x38\x40\xe2\x24\x4e\x20\xa7\x5d\x85\xd3\x74\x81\x21\xfd\xc9\x40\x90\x80\x8c\xed\x2d\xd3\x5b\xc4\xb7\xc9\x7c\x80\xa5\x2f\x63\x86\x34\x4e\x8c\x92\x07\x86\x9e\xda\xfd\xf8\x11\x83\x8a\x5a\x23\xc1\xe6\x77\x37\x5d\xf9\x5c\x60\xd1\x6d\xfd\x0c\x54\xd1\x00\xe9\xab\x97\x6d\x8e\x83\x8b\x6e\x1a\x38\x73\x43\xe2\x24\xc2\xe2\x4e\x74\x3f\xe4\x4d\xdd\x27\xed\xc7\x72\x88\xd3\x0f\x93\xb3\xdb\xa2\xb7\xaf\x6d\xe9\xab\x76\x53\x63\xf9\x62\xd7\x52\x44\x61\x60\x5d\x2e\x9b\xf7"
}
]
rwSignatureVectors =
[ SignatureVector
{ message = "\x75\x0c\x40\x47\xf5\x47\xe8\xe4\x14\x11\x85\x65\x23\x29\x8a\xc9\xba\xe2\x45\xef\xaf\x13\x97\xfb\xe5\x6f\x9d\xd5"
, padding = B.empty -- not used
, signature = 0x1e57b554a8e83aacd9d4067f9535991e7db47803250cded5cc8af5458a6bb11fea852139e0afe143f9339dd94a518e354e702134d1ae222460127829d92e8bf6441336f5ae7044ec7b6c3ad8b9aeeb1ea02a49798e020cb5b558120bbb51f060eb1608ba68f90cac7edb1051c177d3bdbb99d1ad92e8d75d6f72f1d06f1d25be
}
]
doBasicRabinEncryptTest key (i, vector) = testCase (show i) (Right (cipherText vector) @=? actual)
where actual = BRabin.encryptWithSeed (seed vector) (OAEP.defaultOAEPParams SHA1) key (plainText vector)
doBasicRabinDecryptTest key (i, vector) = testCase (show i) (Just (plainText vector) @=? actual)
where actual = BRabin.decrypt (OAEP.defaultOAEPParams SHA1) key (cipherText vector)
doBasicRabinSignTest key (i, vector) = testCase (show i) (Right (BRabin.Signature ((os2ip $ padding vector), (signature vector))) @=? actual)
where actual = BRabin.signWith (padding vector) key SHA1 (message vector)
doBasicRabinVerifyTest key (i, vector) = testCase (show i) (True @=? actual)
where actual = BRabin.verify key SHA1 (message vector) (BRabin.Signature ((os2ip $ padding vector), (signature vector)))
doModifiedRabinSignTest key (i, vector) = testCase (show i) (Right (signature vector) @=? actual)
where actual = MRabin.sign key SHA1 (message vector)
doModifiedRabinVerifyTest key (i, vector) = testCase (show i) (True @=? actual)
where actual = MRabin.verify key SHA1 (message vector) (signature vector)
doRwEncryptTest key (i, vector) = testCase (show i) (Right (cipherText vector) @=? actual)
where actual = RW.encryptWithSeed (seed vector) (OAEP.defaultOAEPParams SHA1) key (plainText vector)
doRwDecryptTest key (i, vector) = testCase (show i) (Just (plainText vector) @=? actual)
where actual = RW.decrypt (OAEP.defaultOAEPParams SHA1) key (cipherText vector)
doRwSignTest key (i, vector) = testCase (show i) (Right (signature vector) @=? actual)
where actual = RW.sign key SHA1 (message vector)
doRwVerifyTest key (i, vector) = testCase (show i) (True @=? actual)
where actual = RW.verify key SHA1 (message vector) (signature vector)
rabinTests = testGroup "Rabin"
[ testGroup "Basic"
[ testGroup "encrypt" $ map (doBasicRabinEncryptTest $ BRabin.private_pub basicRabinKey) (zip [katZero..] basicRabinEncryptionVectors)
, testGroup "decrypt" $ map (doBasicRabinDecryptTest $ basicRabinKey) (zip [katZero..] basicRabinEncryptionVectors)
, testGroup "sign" $ map (doBasicRabinSignTest $ basicRabinKey) (zip [katZero..] basicRabinSignatureVectors)
, testGroup "verify" $ map (doBasicRabinVerifyTest $ BRabin.private_pub basicRabinKey) (zip [katZero..] basicRabinSignatureVectors)
]
, testGroup "Modified"
[ testGroup "sign" $ map (doModifiedRabinSignTest $ modifiedRabinKey) (zip [katZero..] modifiedRabinSignatureVectors)
, testGroup "verify" $ map (doModifiedRabinVerifyTest $ MRabin.private_pub modifiedRabinKey) (zip [katZero..] modifiedRabinSignatureVectors)
]
, testGroup "RW"
[ testGroup "encrypt" $ map (doRwEncryptTest $ RW.private_pub rwKey) (zip [katZero..] rwEncryptionVectors)
, testGroup "decrypt" $ map (doRwDecryptTest $ rwKey) (zip [katZero..] rwEncryptionVectors)
, testGroup "sign" $ map (doRwSignTest $ rwKey) (zip [katZero..] rwSignatureVectors)
, testGroup "verify" $ map (doRwVerifyTest $ RW.private_pub rwKey) (zip [katZero..] rwSignatureVectors)
]
]

View File

@ -52,6 +52,9 @@ tests = testGroup "number"
in bits == numBits prime
, testProperty "marshalling" $ \qaInt ->
getQAInteger qaInt == os2ip (i2osp (getQAInteger qaInt) :: Bytes)
, testProperty "as-power-of-2-and-odd" $ \n ->
let (e, a1) = asPowerOf2AndOdd n
in n == (2^e)*a1
, testGroup "marshalling-kat-to-bytearray" $ map toSerializationKat $ zip [katZero..] serializationVectors
, testGroup "marshalling-kat-to-integer" $ map toSerializationKatInteger $ zip [katZero..] serializationVectors
]